
 EPCIO Series Motion Control Command Library User Manual

EPCIO Series

Motion Control Command Library

User Manual

(Applicable to Motion Control Command Library V.5.10)

Version: V. 5.10

Date: 2009.10

http://www.epcio.com.tw

http://www.epcio.com.tw/

 EPCIO Series Motion Control Command Library User Manual

1

Table of Contents

1. Introduction to the Motion Control Command Library 4

2. MCCL Functions .. 6

2.1 Software Specifications .. 6

2.2 Motion Axis Definitions and the Maximum Number of

Combinable Control Cards .. 7

2.2.1 Motion Axis Definition .. 7

2.2.2 Maximum Number of Combinable Control Cards 7

2.3 Command Library Operational Properties .. 9

2.4 Machine, Encoder, and Go Home Parameter Settings 13

2.4.1 Machine Parameters . 13

2.4.2 Encoder Parameters . 19

2.4.3 Go Home Parameters . 21

2.4.4 Group (Motion Group) Parameter Setting ... 24

2.5 Enabaling and Disabling the Motion Control Command

Library .. 28

2.5.1 Enabling the Motion Control Command Library 28

2.5.2 Disabling the Motion Control Command Library 31

2.6 Motion Control . 32

2.6.1 Position System ... 32

2.6.2 Basic Trajectory Planning .. 33

2.6.3 Advanced Trajectory Planning ... 38

2.6.4 Interpolation Time and Acceleration/Deceleration Time 43

2.6.5 System Status Check .. 47

2.7 In Position Control . 50

2.7.1 Closed Loop Proportional Gain Setting .. 50

2.7.2 In Position Confirmation .. 50

2.7.3 Tracking Error Sensor .. 54

2.7.4 Handling Posit ional Closed Loop Control Failure 56

2.7.5 Gear Backlash and Gap Compensation .. 59

 EPCIO Series Motion Control Command Library User Manual

2

2.8 Go Home ... 63

2.8.1 Go Home Mode Description .. 63

2.8.2 Enabling Go Home ... 74

2.9 Local I/O Control . 76

2.9.1 Input Connection Status .. 76

2.9.2 Signal Output Control . 76

2.9.3 Input Signal Triggered Interrupt Service Routine 77

2.10 Encoder Control . 81

2.10.1 General Control . 81

2.10.2 Count Latch .. 81

2.10.3 Encoder Count Triggered Interrupt Service Routine 83

2.10.4 Encoder Index Triggered Interrupt Service Routine 87

2.11 Digital to Analog Converter (DAC) Control . 89

2.11.1 General Control . 89

2.11.2 DAC Hardware Trigger Mode .. 89

2.12 Analog to Digital (ADC) Control . 92

2.12.1 Initial Settings .. 92

2.12.2 Continuous ADC Conversion .. 92

2.12.3 Single Channel ADC Conversion .. 93

2.12.4 Specific ADC Triggered Interrupt Service Routine 93

2.12.5 ADC Conversion Completion Triggered Interrupt Service

Routine .. 96

2.13 Timer and Watchdog Control . 99

2.13.1 Timer Triggered Interrupt Service Routine .. 99

2.13.2 Watchdog Control . 100

2.14 Remote I/O Control . 101

2.14.1 Initial Settings .. 101

2.14.2 Setting and Acquiring I/O Status .. 101

2.14.3 Acquiring Data Transmission Status .. 103

2.14.4 Input Signal Triggered Interrupt Service Routine 103

2.14.5 Data Transmission Error Triggered Interrupt Service

 EPCIO Series Motion Control Command Library User Manual

3

Routine .. 107

2.14.6 Remote I/O Command.... 108

3. Editing and Translation Environment .. 110

3.1 Using Visual C++ ... 110

3.2 Using Visual Basic .. 111

3.3 Using C++ Builder .. 112

EPCIO Series Motion Control

Command Library User Manual

4

1. Introduction to the Motion Control Command Library

The EPCIO Series Motion Control Command Library (MCCL) provided

with the EPCIO Series motion control cards can be used in WINDOWS 98SE and

WINDOWS NT/2000/XP work platforms, and supports Visual C++, Visual Basic,

and Borland C++ Builder development environments.

The MCCL provides spatial trajectory planning commands such as point-to-

point, straight line, curve, circular, and helix motions. Additionally, the MCCL also

provides 16 types of the go home modes, motion dry run, motion delay, pulse motion

/inch motion/continuous inch motion, and pause, continue, and abort motions.

For the trajectory planning function, settings include different

acceleration/deceleration times, acceleration/deceleration curve types, feed speeds,

maximum feed speed, and maximum acceleration. The MCCL also includes software

and hardware over-travel protection, path blending, dynamic feed speed adjustments,

and error information handling.

For the in position controls, the user can use the MCCL to set the in position

proportional gain and error tolerance. The MCCL also provides the in position

confirmation, gear backlash, and gap compensation.

For handling the I/O connection signal, the user can utilize the MCCL to acquire

the Home connection and Limit Switch connection signals, and to output the Servo-

On/Off signal. Additionally, certain I/O input signals automatically trigger the

interrupt service routine (ISR), but the user can customize the ISR.

For the encoder, the user can promptly acquire the encoder count and set the

encoder signal input rate. Certain input signals automatically latch the encoder count.

The MCCL supports a function which triggers the user-customized ISR when the

encoder count reaches a given value.

For D/A conversion, users can not only use the MCCL to output the required

external voltage (-10 V to 10 V), but can also preprogram the desired input voltage,

and automatically output this voltage once the trigger conditions have been satisfied.

For A/D conversion, the user can use the MCCL to acquire the input voltage (-5

V to 5 V or 0 V to 10 V; -10 V to 10 V or 0 V to 20 V) and set unitary or label

channel voltage conversion. The ISR is triggered once the conversion work is

complete or the voltage satisfies the comparative condition. The user can customize

the ISR.

EPCIO Series Motion Control

Command Library User Manual

5

For the timer, the user can set the time limit. Once the timer is enabled and the

time ends, the user-customized ISR is automatically triggered and the timer is reset.

This process continues until the function is disabled. The MCCL also provides a

Watchdog function.

Using the MCCL does not require an in-depth understanding of the complex

trajectory planning, in position control, and real-time multi-tasking environment. With

this command library, users can quickly develop and integrate systems.

Related Reference Manuals:

Hardware Information

EPCIO – 400/405 Hardware User Manual

EPCIO – 601/605 Hardware User Manual

EPCIO – 4000/4005 Hardware User Manual

EPCIO – 6000/6005 Hardware User Manual

Motion Control Command Library User Guides

EPCIO Series Motion Control Command Library Reference Manual

EPCIO Series Motion Control Command Library Examples Manual

EPCIO Series Motion Control Command Library Integrated Testing Enviroment Manual

EPCIO Series Motion Control

Command Library User Manual

6

2. MCCL Functions

2.1 Software Specifications

 Work System Environment

 WINDOWS 98SE

 WINDOWS NT

 WINDOWS 2000

 WINDOWS XP/XP Embedded

 Development Environment

 Borland C++ Builder (BCB)

Visual C++ (VC++)

 Visual Basic (VB)

 Required Files When Using the MCCL

 PCI ISA

VC++

MCCL.h

MCCL_Fun.h

MCCLPCI_50.lib

MCCL.h

MCCL_Fun.h

MCCLISA_50.lib

BCB

MCCL.h

MCCL_Fun.h

MCCLPCI_50_BCB.lib

MCCL.h

MCCL_Fun.h

MCCLISA_50_BCB.lib

VB MCCLPCI_50.bas MCCLISA_50.bas

EPCIO Series Motion Control

Command Library User Manual

7

2.2 Motion Axis Definitions and the Maximum Number of

Combinable Control Cards

2.2.1 Motion Axis Definition

The purpose of MCCL design is to provide motion control functions for three

orthogonal axes (XYZ) with three auxiliary axes (UVW). See Fig. 2.2.1. U, V, and W

are the three auxiliary axes representing three independent axial directions.

Fig. 2.2.1. Three orthogonal axes (XYZ) with three auxiliary axes (UVW)

The MCCL provides a maximum of 6 control axes with simultaneous movement.

The user can utilize an EPCIO Series motion control card to simultaneously or

separately control 1 to 6 axes. The user can select absolute or incremental positions

for given motion commands. This command library will record the motion's absolute

position (corresponding to the home position) regardless of the position type selected.

2.2.2 Maximum Number of Combinable Control Cards

Each motion control card can control up to a six groups of system (both motor

and driver) (EPCIO-601/605/6000/6005) or four groups of system (EPCIO-

400/405/4000/4005), depending on type. The motion control command library can

EPCIO Series Motion Control

Command Library User Manual

8

control up to 12 motion control cards simultaneously, thereby controlling a maximum

of 72 axes. EPCIO Series motion control cards can send velocity commands (only

EPCIO-400/601/4000/6000) or pulse commands (all products in the EPCIO series).

The basic configuration is displayed in Fig. 2.2.2.

Fig. 2.2.2. The MCCL can control 12 EPCIO series motion control cards

User Application

MCCL EPCIO Card

(Index : 1)

Driver Motor

Driver Motor

Driver Motor

Driver Motor

Driver Motor

Driver Motor

EPCIO Card

(Index : 0)

EPCIO Card

(Index : 11)

EPCIO Card

(Index : 2)

EPCIO Series Motion Control

Command Library User Manual

9

2.3 Command Library Operational Properties

After motion commands are called in the MCCL, the related motion commands

will first be put into each group's exclusive motion command queue and will not be

executed immediately (for a description of groups, please refer to 2.5.1 Initiating the

Motion Control Command Library). The MCCL will then use the first in first out

(FIFO) method to get the motion command from the queue to conduct interpretation

and caculate the interpolation (refer to Fig. 2.3.2). Putting and getting the commands

are non-sequential and asynchronized actions. It is unnecessary to wait for the

completion of one motion command before a new motion command can be sent to the

motion command queue.

Fig. 2.3.2 Motion Command Queue

The motion command queue for each group is preset to store 10,000 commands

(10,000 is the maximum), but MCC_SetCmdQueueSize can be used to change the

size, and MCC_GetCmdQueueSize can be used to acquire the current size of the

queue. Notably, the queue size can only be changed when the queue is empty.

The following is a list of command names that will increase the motion command

library storage capacity.

By calling these commands, the MCCL will put a command in the motion

command queue, get the first command in the queue at the appropriate time, and

perform the corresponding action.

MCC_Line(10, 10, 0, 0, 0, 0, 0)

MCC_ArcXY(10, 20, 20, 20, 0)

MCC_CircleXY(25, 20, 0, 0)

Queue

OP Code 3

Interpolate

Put Get

Asynchronization

OP Code 2

OP Code 1

EPCIO Series Motion Control

Command Library User Manual

10

A. Straight Line Motion Command

MCC_Line()

B. Curved Motion Commands

MCC_ArcXYZ() MCC_ArcXYZUVW()

MCC_ArcXY() MCC_ArcYZ()

MCC_ArcZX()

MCC_ArcXYUVW() MCC_ArcYZUVW() MCC_ArcZXUVW()

MCC_ArcThetaXY() MCC_ArcThetaYZ() MCC_ArcThetaZX()

C. Circular Motion Commands

MCC_CircleXY() MCC_CircleYZ() MCC_CircleZX()

MCC_CircleXYUVW() MCC_CircleYZUVW() MCC_CircleZXUVW()

D. Helix Motion Commands

MCC_HelicaXY_Z() MCC_HelicaYZ_X() MCC_HelicaZX_Y()

E. Point-to-Point Motion Command

MCC_PtP()

F. Inch Motion and Continuous Inch Motion Commands

MCC_JogSpace() MCC_JogConti()

G. Confirm In Position Commands

MCC_EnableInPos() MCC_DisableInPos()

H. Path Blending Commands

MCC_EnableBlend() MCC_DisableBlend()

I. Delay Motion Command

MCC_DelayMotion()

EPCIO Series Motion Control

Command Library User Manual

11

Using the above commands when the motion command queue is already full will

result in a return value of COMMAND_BUFFER_FULL_ERR, meaning that the

command cannot be accepted. Figure 2.3.2 shows the operational process for the

Group 0 motion command queue, and demonstrates that commands belonging to the

same group will be executed sequentially. Because each group has an exclusive

motion command queue, motion commands from different groups can be executed

simultaneously.

CAUTION:

If you have the requirement: After making the Group 0 X axis moves to the

position at coordinate 10, output the servo-on signal and further move the axis to

coordinate 20. The program could be written like this:

MCC_Line(10, 0, 0, 0, 0, 0, 0);

MCC_SetServoOn(1, 0);

MCC_Line(20, 0, 0, 0, 0, 0, 0);

Then, once MCC_Line() has been placed in the motion command queue (but has

yet to be executed), immediately perform MCC_SetServoOn(). Because

MCC_SetServoOn() is not placed in the queue but instead directly executed, the

servo-on signal will have already been sent before the actual position reaches

coordinate 10. This operational property requires special attention.

If the signal output needs to be executed after the X axis reaches coordinate 10,

additional user determination is required. Users must inspect the system motion status

or current position to control the signal output. Below is a simple example:

// Assume the X axis in Group 0 is required to move to coordinate 10 before

servo-on is output

// signal

MCC_Line(10, 0, 0, 0, 0, 0, 0);

while (MCC_GetMotionStatus(0) != GMS_STOP)

EPCIO Series Motion Control

Command Library User Manual

12

// MCC_GetMotionStatus() return value equaling GMS_STOP indicates that

currently all

// motion commands have been completed

MCC_SetServoOn(1, 0);

MCC_Line(20, 0, 0, 0, 0, 0, 0);

EPCIO Series Motion Control

Command Library User Manual

13

2.4 Machine, Encoder, and Go Home Parameter Settings

2.4.1 Machine Parameters

The MCCL uses machine parameters to define the user’s machine platform

characteristics and driver usage type by using a logical home positioning system,

position system boundary values, or maximum safe feed speeds for each axis

corresponding to machine parameter planning.

dwPPR

Ball Screw

E M

Gear Box

N1 N2

= N1 / N2
wRPM

dfPitch

dfHighLimi

t
dfLowLimi

t

Machine Zero Logic Zero
dfOffset

+-
Zero

Table

dfGearRatio

Fig. 2.4.1. Structural platform charcteristics

Below is a detailed description of the machine parameters:

typedef struct _SYS_MAC_PARAM

{

WORD wPosToEncoderDir;

WORD wRPM;

DWORD dwPPR;

EPCIO Series Motion Control

Command Library User Manual

14

double dfPitch;

double dfGearRatio;

double dfHighLimit;

double dfLowLimit;

double dfHighLimitOffset;

double dfLowLimitOffset;

WORD wPulseMode;

WORD wPulseWidth;

WORD wCommandMode;

WORD wPaddle;

WORD wOverTravelUpSensorMode;

WORD wOverTravelDownSensorModee;

} SYS_MAC_PARAM;

wPosToEncoderDir: Directional adjustment parameter

0 Output command does not reverse

1 Output command reverses

This parameter revises the direction of the motion command when it differs from the

desired structural motion direction. If a forward direction motion command such as

MCC_JogSpace(10, 10, 0, 0) is sent, but due to motor wiring the structure actually

moves in the direction opposite the user’s definition, this parameter could be set to

“1” to align the directions of the motion command with the desired direction of the

structural motion (altering motor wiring is not required).

dwRPM: Maximum number of safe motor rotations per minute for each axis

When conducting fast point-to-point motion, each axis’s number of rotations per

minute, which is converted from the speed setting, will not exceed the set value for

dwRPM.

 See Also MCC_SetPtPSpeed()

wPPR: Increase in the encoder count for each revolution of the motor shaft or number

of pulses required per rotation

EPCIO Series Motion Control

Command Library User Manual

15

If closed circuit control is used, this value is the increase in the encoder count for

each revolution of the motor shaft; if it is an open circuit system, the value is the

number of pulses required per revolution.

When using a linear motor, dfPitch and dfGearRatio should both be set to 1.

Additionally, a linear motor has no definition related to wPPR and the distance

required to move is often calculated in terms of pulses, so wPPR can be set to 1 and

the units used in the MCCL can be changed to pulse. For example, when the X axis

needs to move 1000 pulses, MCC_Line(1000, 0, 0, 0, 0, 0) can be called for the X

axis to output 1000 pulses. Using MCC_SetFeedSpeed(500) means that required

linear motor speed is 500 pulses per minute.

dfPitch: Ball screw backlash

The distance the table moves for each revolution of the ball screw. Units: mm or inch.

If there is no ball screw configuration, this value should be set to 1.

dfGearRatio: Gearbox deceleration ratio

The two-way gear ratio for the gearbox connecting the motor shaft and the ball screw

can be calculated using the number of gear gaps, or is simply defined as “number of

motor rotations per ball screw revolution.” If the gearbox is not configured, this value

should be set to 1.

dfHighLimit: Positive boundary for over travel software (also called high limit)

This value is the maximum positive displacement allowed from the logical home

position. Units: mm or inch.

 See Also MCC_SetOverTravelCheck()

dfLowLimit: Negative boundary for over travel software (also called low limit)

This value is the maximum negative displacement allowed from the logical home

position and is often set as a negative value. Units: mm or inch.

dfHighLimitOffset:

To preserve the field, set to 0.

EPCIO Series Motion Control

Command Library User Manual

16

dfLowLimitOffset:

To preserve the field, set to 0.

wPulseMode: Pulse output mode

DDA_FMT_PD Pulse/Direction

DDA_FMT_CW CW/CCW

DDA_FMT_AB A/B phase

wPulseWidth: Pulse output width

The length of the pulse output width should conform to the required drive

specifications. Actual output pulse width is equal to this set value multiplied by the

system cycle time (25 ns). Pulse output width should be set according to the required

drive specifications. Normally, this value should not be less than 40.

wCommandMode: Motion command output mode

OCM_PULSE Pulse Command

OCM_VOLTAGE Velocity Command

Caution: wPulseMode and wPulseWidth only have meaning when this value is

OCM_PULSE.

wPaddle

To preserve the field, set to 0.

wOverTravelUpSensorMode: Positive Limit switch wiring; please refer to the below

description of how to verify that the wiring is correct.

SL_NORMAL_OPEN Active High

SL_NORMAL_CLOSE Active Low

SL_UNUSED Does not check if the limit switch has been

triggered. This item can be used if the limit

switch has yet to be installed for the axis

indicated.

EPCIO Series Motion Control

Command Library User Manual

17

wOverTravelUpSensorMode: Negative Limit switch wiring; please refer to the below

description of how to verify that the wiring is correct.

SL_NORMAL_OPEN Active High

SL_NORMAL_CLOSE Active Low

SL_UNUSED Does not check if the limit switch has been

triggered. This item can be used if the limit

switch has yet to be installed for the axis

indicated.

Fig. 2.4.2. Limit switch wiring

To use the limit switch function, wOverTravelUpSensorMode and

wOverTravelDownSensorMode must be accurately set according to the limit switch

wiring (see Fig. 2.4.2). MCC_GetLimitSwitchStatus() can be used to verify the

accuracy of the wiring settings. If the limit switch status obtained by

MCC_GetLimitSwitchStatus() is active when the limit switch has yet to be triggered,

then there is an error in the wiring settings, and wOverTravelUpSensorMode or

wOverTravelDownSensorMode needs to be reset.

For the limit switch to operate normally, in addition to accurately setting the

limit switch wiring, MCC_EnableLimitSwitchCheck() must also be called for the

COM

OT+
NO

(Active Low)

+24V

24V_GND

EPCIO SERIES

Motion Card
Limit Switch +

COM

OT+

NC

(Active High)

+24V

24V_GND

EPCIO Series

Motion Card Limit Switch -

EPCIO Series Motion Control

Command Library User Manual

18

wOverTravelUpSensorMode and wOverTravelDownSensorMode settings to be

effective.

However, calling MCC_EnableLimitSwitchCheck() is meaningless if

wOverTravelUpSensorMode and wOverTravelDownSensorMode are set to

SL_UNUSED.

When this function is enabled, triggering the limit switch for the direction of the

given axis (for example, triggering the positive limit switch when moving in a

positive direction, or triggering the negative limit switch when moving in a negative

direction) will stop the output group motion command (and produce an error record).

MCC_EnableLimitSwitchCheck() is often used in combination with

MCC_GetErrorCode(). Continuously calling MCC_GetErrorCode () verifies whether

the system has produced an error record by triggering a limit switch (codes 0xF701 to

0xF706 represent triggered limit switches for axes X to W, respectively). When an

error from a triggered limit switch is discovered, a message will display on the screen,

alerting the operator. MCC_ClearError() is then called during programming to clear

the error and allow the system to travel in the opposite direction, away from the limit

switch.

After each field content within the machine parameters is confirmed, the

machine parameters can be set using MCC_SetMacParam(). Below is an example of

this command:

SYS_MAC_PARAM stAxisParam;

memset(&stAxisParam, 0, sizeof(SYS_MAC_PARAM)); // clear content to zero

stAxisParam.wPosToEncoderDir = 0;

stAxisParam.dwPPR = 500;

stAxisParam.wRPM = 3000;

stAxisParam.dfPitch = 1.0;

stAxisParam.dfGearRatio = 1.0;

stAxisParam.dfHighLimit = 50000.0;

stAxisParam.dfLowLimit = -50000.0;

stAxisParam.wPulseMode = DDA_FMT_PD;

EPCIO Series Motion Control

Command Library User Manual

19

stAxisParam.wPulseWidth = 100;

stAxisParam.wCommandMode = OCM_PULSE;

stAxisParam.wOverTravelUpSensorMode = SL_UNUSED; // not check

stAxisParam.wOverTravelDownSensorMode = SL_UNUSED; // not check

MCC_SetMacParam(&stAxisParam, 0, 0); // set axis 0 in card 0

The machine parameters must be set before the MCC_InitSystem() is used.

Additionally, the machine parameters in various axes must be set separately.

→See Also MCC_GetMacParam()

2.4.2 Encoder Parameters

The MCCL uses encoder parameters to define the encoder characteristics,

including the encoder signal input types, signal input phase swap status, and feedback

rates (x 1, x 2, and x 4). A detailed description of the encoder parameters is provided

below:

typedef struct _SYS_ENCODER_CONFIG

{

WORD wType;

WORD wAInverse;

WORD wBInverse;

WORD wCInverse;

WORD wABSwap;

WORD wInputRate;

WORD wPaddle [2];

} SYS_ENCODER_CONFIG;

wType: Input type setting

ENC_TYPE_AB A/B Phase

ENC_TYPE_CW CW/CCW

ENC_TYPE_PD Pulse / Direction

EPCIO Series Motion Control

Command Library User Manual

20

wAInverse: Phase A signal inverse status

0 Not inverse

1 Inverse

wBInverse: Phase B signal inverse status

0 Not inverse

1 Inverse

wCInverse: Phase C (Phase Z) signal inverse status

0 Not inverse

1 Inverse

wABSwap: Phase A/B signal swap status

0 Not swap

1 Swap

wInputRate: Set encoder feedback rate

1 Feedback rate of 1 (×1)

2 Feedback rate of 2 (×2)

4 Feedback rate of 4 (×4)

paddle: To preserve the field, set to 0.

After each field content within the encoder parameters is confirmed, the encoder

parameters can be set using MCC_SetEncoderConfig(). Below is an example of this

command:

SYS_ENCODER_CONFIG stENCConfig;

memset(&stENCConfig, 0, sizeof(SYS_ENCODER_CONFIG));

stENCConfig.wType = ENC_TYPE_AB;

stENCConfig.wAInverse = 0; // not inverse

EPCIO Series Motion Control

Command Library User Manual

21

stENCConfig.wBInverse = 0; // not inverse

stENCConfig.wCInverse = 0; // not inverse

stENCConfig.wABSwap = 0; // not swap

stENCConfig.wInputRate = 4; // set encoder input rate: x4

MCC_SetEncoderConfig(&stENCConfig, 0, 0); // set axis 0 in card 0

Before using MCC_InitSystem(), the encoder parameters of each axis must be

set separately.

CAUTION

If the machine or encoder parameters are altered after MCC_InitSystem() has

been called, MCC_UpdateParam() must also be called for the system to be able to

respond to the new settings. However, the effect of using MCC_UpdateParam() is

similar to that when using MCC_ResetMotion(): the system will reset to the initial

status created after MCC_InitSystem() is called.

2.4.3 Go Home Parameters

The MCCL uses the Go Home parameters to define the Go Home action,

including mode of use, direction of Go Home motion, Home sensor wiring, encoder

index signal counts, and acceleration/deceleration settings. For a more detailed

explanation, please read “2.8 Go Home.”

The Go Home parameter content is described below:

typedef struct _SYS_HOME_CONFIG

{

WORD wMode;

WORD wDirection;

WORD wSensorMode;

WORD wPaddel0;

int nIndexCount;

int nPaddel1;

EPCIO Series Motion Control

Command Library User Manual

22

double dfAccTime;

double dfDecTime;

double dfHighSpeed ;

double dfLowSpeed ;

double dfOffset;

} SYS_HOME_CONFIG;

wMode: Go Home mode

This defines the Go Home mode used. This parameter value must be greater than 3

and less than 16. For a detailed description of each mode, please consult the section

related to Go Home.

wDirection: Initial direction of Go Home motion

0 Positive

1 Negative

wSensorMode: Home sensor wiring

SL_NORMAL_OPEN Active High

SL_NORMAL_CLOSE Active Low

Fig. 2.4.3. Home sensor wiring

COM

HOM
NO

(Active Low)

+24V

24V_GND

EPCIO SERIES

Motion Card
Home Sensor

COM

HOM

NC

(Active High)

+24V

24V_GND

EPCIO Series

Motion Card
Home Sensor

EPCIO Series Motion Control

Command Library User Manual

23

To use the Go Home function, wSensorMode must be accurately set according

to the home sensor wiring (see Fig. 2.4.3). MCC_GetHomeSensorStatus() can be used

to verify the accuracy of the wiring settings. If the home sensor status obtained by

MCC_GetLimitSwitchStatus() is active despite the home sensor not having been

triggered, then there is an error in the wiring, and the wSensorMode setting needs to

be altered.

nIndexCount: Indicated encoder index signal code

For phase 2 in the Go Home motion process (seeking indicated code index), the code

for the first index signal that occurs is 0, the code for the second index signal that

occurs is 1, and subsequent index signals follow this pattern. Some Go Home modes

require the indicated encoder index signal code to be able to complete the entire Go

Home motion once the signal has been triggered.

dfAccTime: The time required to accelerate to dfHighSpeed or dfLowSpeed during the

Go Home motion. Unit: ms

dfDecTime: The time required to decelerate from dfHighSpeed or dfLowSpeed to a

stop during the Go Home motion. Unit: ms

dfHighSpeed: High speed setting. Unit: mm/s or inch/s.

This command is often the speed used during the first phase of the Go Home motion.

dfLowSpeed: Low speed setting. Unit: mm/s or inch/s.

This command is often the speed used during the final phase of completing the Go

Home motion.

dfOffset: Distance from the logical home position. Unit: mm or inch

Generally, the displacement between the machine home and the logical home will be

found during inspection. To confirm this displacement, first set dfOffset to 0. When

the Go Home action is complete (the platform has stopped at the “machine home”),

use the JOG driver method to find the displacement from the “logical home,” and use

EPCIO Series Motion Control

Command Library User Manual

24

this displacement for the dfOffset setting. After Go Home has been performed again,

the motion axis will move to the “logical home” position and the system will use this

point as the motion command reference home.

After each field content within the Go Home parameters is confirmed, the Go

Home parameters can be set using MCC_SetHomeConfig(). Below is an example of

this command:

SYS_HOME_CONFIG stHomeConfig;

memset(&stHomeConfig, 0, sizeof(SYS_HOME_CONFIG));

stHomeConfig.wMode = 3; //usage mode 3

stHomeConfig.wDirection = 1; // Go Home motion in a negative direction

stHomeConfig.wSensorMode = 0; // use Active High wiring

stHomeConfig.nIndexCount = 2; // index code 2

stHomeConfig.dfAccTime = 300; // time required for acceleration, units: ms

stHomeConfig.dfDecTime = 300; // time required for deceleration, units: ms

stHomeConfig.dfHighSpeed = 10; // unit: mm/s or inch/s

stHomeConfig.dfLowSpeed = 2; // unit: mm/s or inch/s

stHomeConfig.dfOffset = 0;

MCC_SetHomeConfig(&stHomeConfig, 0, 0); // sets axis 0 in card 0

The Go Home parameters of each axis must be set separately before the Go

Home motion can be executed.

2.4.4 Group (Motion Group) Parameter Setting

All required groups (motion groups) must be established before using the

MCCL. A group can be considered an independent motion system. An interdependent

relationship often exists between each motion axis within this system during motion.

An obvious example is the XYZ table.

EPCIO Series Motion Control

Command Library User Manual

25

For the group operation concept used in the MCCL, the motion control

commands provided are primarily operated in units of groups. Each group contains

six motion axes: X, Y, Z, U, V, and W; but each motion axis is not required to

actually correspond to an output channel on the EPCIO Series motion control card.

The MCCL can simultaneously control 12 EPCIO Series motion control cards. Each

card has a maximum of 6 defined groups, so the MCCL can simultaneously use up to

72 mutually independent groups without impacting the operations of other groups.

Fig. 2.4.5. Group parameter settings

For example, two groups and one EPCIO Series motion control card are being used

in Fig. 2.4.5. The result of the trajectory planning for axes X, Y, and Z in Group(0)

are from physical output channels 0, 1, and 2, respectively in Card 0; trajectory

planning for axes U, V, and W is ignored. The result of the trajectory planning for

axes X, Y, and Z in Group(1) are from physical output channels 3, 4, and 5,

respectively in Card 0; trajectory planning for axes U, V, and W is ignored.

Here, the programming can be written as follows:

int nGroup0, nGroup1;

MCC_CloseAllGroups(); // disable all the groups

nGroup0 = MCC_CreateGroup(0, // X corresponds to physical output channel 0

X Y Z U V W X Y Z U V W

Group 0 Group 1 Group 71

0 1 2 3 4 5

-1 -1 -1 -1 -1 -1
X Y Z U V W X Y Z U V W

Group 3

EPCIO Series Motion Control Card (Card Index: 0)

EPCIO Series Motion Control

Command Library User Manual

26

nGroup1 = MCC_CreateGroup(3, // X corresponds to physical output channel 3

4, // Y corresponds to physical output channel Channel 4

5, // Z corresponds to physical output channel Channel 5

-1, // U does not correspond to an physical output channel

-1, // V does not correspond to an physical output channel

-1, // W does not correspond to an physical output channel

0); // corresponds to Card 0

The return value for MCC_CreateGroup() represents the newly established

group code (0 to 71). This code will be used later when calling motion commands.

For example, to move the X, Y, and Z axes in Group(1) to coordinate position 10, the

program MCC_Line(10, 10, 10, 0, 0, 0, nGroup1) should be written. EPCIO series

motion control Cards 0 channels 3, 4, and 5 will be responsible for the interpolation

output of axes X, Y, and Z in this group. This is further illustrated in the following

example.

MCC_Line(10, 10, 10, 0, 0, 0, nGroup0); // command 0

MCC_Line(20, 20, 20, 0, 0, 0, nGroup0); // command 1

MCC_Line(10, 10, 10, 0, 0, 0, nGroup1); // command 2

MCC_Line(20, 20, 20, 0, 0, 0, nGroup1); // command 3

Using the above group settings, Group(0) will execute command 0 and will

output the trajectory planning for axes X, Y, and Z from Card 0 channels 0, 1, and 2.

After command 0 is complete, Group(0) can then execute command 1 from the same

group.

1, // Y corresp onds to physical output channel 1

2, // Z corresponds to physical output channel 2

-1, // U does not correspond to an physical output channel

-1, // V does not correspond to an physical output channel

-1, // W does not correspond to an physical output channel

0); // corresponds to Card 0

EPCIO Series Motion Control

Command Library User Manual

27

Because each group operates autonomously, Group(1) is not required to wait for

Group(0) to complete command 0 before directly executing command 2, and

outputting trajectory planning for axes X, Y, and Z from Card 0 channels 3, 4, and 5.

After command 2 is complete, Group(1) can then execute command 3 from the same

group.

If no groups have been created before initiating the MCCL, the MCCL will use

the default operations. Default operations simply enable the index to be Group(0) and

its motion axes X, Y, Z, U, V, and W to correspond to Card 0 channels 0 through 5.

NOTE

1. Groups do not affect each other.

2. Groups all contain six motion axes, X, Y, Z, U, V, and W, that may or

may not correspond to a physical channel output. However, at least one

motion axis in the group is required to correspond to a physical channel.

In addition, two motion axes cannot correspond to the same physical

channel.

3. To reduce CPU usage rate, minimize the number of groups used.

EPCIO Series Motion Control

Command Library User Manual

28

2.5 Enabaling and Disabling the Motion Control Command Library

2.5.1 Enabling the Motion Control Command Library

The following parameters must be set prior to using the MCCL:

a. Machine Parameters Use: MCC_SetMacParam()

b. Encoder Parameters Use: MCC_SetEncoderConfig()

c. Group Parameters Use: MCC_CreateGroup() /

MCC_CloseAllGroups()

If these parameters have not been set or if errors occur during these procedures,

other commands in the MCCL cannot be used. For machine, encoder, and group

(motion group) parameter settings, please read the description in the earlier section of

this manual and consult the “EPCIO Series Motion Control Command Library

Examples Manual.” The following only describes how to initiate the MCCL.

I. Setting EPCIO Series Motion Control Card Hardware Parameters

The EPCIO Series motion control card hardware parameters set the control card

type and the I/O address used. Please note that currently the MCCL does not support

combining ISA Bus and PCI Bus motion control cards. The EPCIO Series motion

control card hardware parameters are defined below:

typedef _SYS_CARD_CONFIG

{

WORD wCardType;

WORD wCardAddress;

WORD wIRQ_No;

WORD wPaddle;

} SYS_CARD_CONFIG;

wCardType: EPCIO Series motion control card type

0 Four-axis ISA Bus EPCIO Series motion control card (EPCIO-400/405)

EPCIO Series Motion Control

Command Library User Manual

29

1 Six-axis ISA Bus EPCIO Series motion control card (EPCIO-601/605)

2 Four-axis PCI Bus EPCIO Series motion control card (EPCIO-

4000/4005)

3 Six-axis PCI Bus EPCIO Series motion control card (EPCIO-

6000/6005)

wCardAddress: The I/O address used by the ISA Bus EPCIO Series motion control

card Possible I/O addresses include: 0x200, 0x220, 0x240, 0x260, 0x280, 0x2a0,

0x2c0, 0x2e0, 0x300, 0x320, 0x340, 0x360, 0x380, 0x3a0, 0x3c0, and 0x3e0.

The ISA Bus EPCIO Series motion control card users must go to WINDOWS

[Control Panel] -> [System] -> [Device Manager] -> [Inspection] to find a

configurable (unoccupied) I/O address for the EPCIO Series motion control card.

The ISA Bus EPCIO Series motion control card users also need to adjust the DIP

switch on the card to correspond with the I/O address. The PCI Bus EPCIO Series

motion control card users can ignore this parameter setting.

wIRQ_No: Interruption number used in the EPCIO Series motion control card

ISA Bus EPCIO Series motion control card users must go to WINDOWS [Control

Panel] -> [System] -> [Device Manager] -> [Inspection] to find a configurable

(unoccupied) IRQ number for the EPCIO Series motion control card. The PCI Bus

EPCIO Series motion control card users can ignore this parameter setting.

wPaddle: To preserve the field, set to 0.

If at this time an EPCIO-405 motion control card and an EPCIO-605 motion

control card are required, the motion control card hardware parameters could be set to

the following:

SYS_CARD_CONFIG stCardConfig[] = {{0, 0x200, 5, 0}, {1, 0x240, 7, 0}};

EPCIO Series Motion Control

Command Library User Manual

30

This parameter will be transmitted with the other parameters when

MCC_InitSystem() is called. At this time, the EPCIO-405 motion control card index

is 0, and the EPCIO-605 motion control card index is 1.

If an EPCIO-4005 motion control card and an EPCIO-6000 motion control card

are used, the motion control card hardware parameters could be set to the following:

SYS_CARD_CONFIG stCardConfig[] = {{2, 0, 0, 0}, {3, 0, 0, 0}};

This parameter will be transmitted with the other parameters when

MCC_InitSystem() is called. At this time, the EPCIO-4005 motion control card index

is 0, and the EPCIO-6000 motion control card index is 1.

II. Enabling the MCCL

Use MCC_InitSystem() to initiate the MCCL. MCC_InitSystem() command

declaration is as follows:

int MCC_InitSystem(int nInterpolateTime ,

SYS_CARD_CONFIG * psCardConfig ,

WORD wCardNo);

nInterpolateTime is the interpolation time (please refer to the explanation in a

later section) in units of ms. The setting limits are between 1 ms to 50 ms, with a

suggested value of 5 ms. Shorter interpolation times will reduce the distance between

two interpolation points, but will increase the work load of the CPU. Below is a

reference for interpolation time settings. These suggested values are not absolute, and

should be adjusted according to actual needs.

EPCIO Series Motion Control

Command Library User Manual

31

System Characteristics
Suggested Interpolation

Time

Vision function and low CPU efficiency 10 ms

Only requires linear motion 5 ms - 10 ms

Generally includes curved motion 5 ms

Requires curved motion trajectories to be circular 1 ms – 3 ms

psCardConfig is the EPCIO Series motion control card hardware parameter

settings for the previous step. wCardNo is the number of the EPCIO Series motion

control cards used at this time. The following is an example when using two EPCIO-

601 motion control cards simultaneously.

SYS_CARD_CONFIG stCardConfig[] = {{1, 0x200, 5, 0}, {1, 0x240, 7, 0}};

MCC_InitSystem(5, stCardConfig, 2);

2.5.2 Disabling the Motion Control Command Library

To close the MCCL, simply call MCC_CloseSystem().

EPCIO Series Motion Control

Command Library User Manual

32

2.6 Motion Control

2.6.1 Position System

The Position System includes the following functions:

I. Select between absolute or incremental position system

 See Also MCC_SetAbsolute()

 MCC_SetIncrease()

 MCC_GetCoordType()

II. Set units to mm or inch.

 See Also MCC_SetUnit()

 MCC_GetUnit()

III. Acquire current position coordinates

 See Also MCC_GetCurPos()

 MCC_GetPulsePos()

IV. Enable/disable software over-travel check function

Once MCC_SetOverTravelCheck() is used to enable this function and each

interpolation point has been calculated, the MCCL will check whether the

interpolation point exceeds the effective work zone for each axis. If an interpolation

point is determined to have exceeded the work zone, commands will not be sent to the

motion control card. MCC_GetErrorCode() can be used to check the information

code (for the meaning of information codes, please refer to the EPCIO Series Motion

Control Command Library Reference Manual) and confirm whether the work zone

has been exceeded.

 See Also MCC_GetOverTravelCheck()

 MCC_GetErrorCode()

V. Enable/disable hardware over-travel check function

For this function, please refer to the description in section 2.4.1 – “Machine

Parameter Settings.”

EPCIO Series Motion Control

Command Library User Manual

33

 See Also MCC_EnableLimitSwitchCheck ()

 MCC_DisableLimitSwitchCheck ()

 MCC_GetLimitSwitchStatus()

VI. Set current system position

Users can reset the current position coordinates. After successfully calling this

command, the system coordinates will move the platform to the new position.

 See Also MCC_DefinePos()

2.6.2 Basic Trajectory Planning

The MCCL provides linear, curved, circular, and helix motions (collectively

referred to as general motion), in addition to point-to-point motion trajectory planning

functions. Prior to using these functions, the acceleration/deceleration type (S or

trapezoid), acceleration/deceleration speed, and feed speed all need to be set to

machine characteristics and special requirements.

I. General Motion (linear, curved, circular, and helix motion)

General motion includes linear, curved, circular, and helical simultaneous multi-

axis motion. The return values for these functions are often checked when the general

motion function is used. If the return value is less than 0, the motion command is

rejected. For the possible reasons for which the motion can be rejected, please refer to

manuals related to return value definitions (please see “EPCIO Series Motion

Control Command Library Reference Manual”). If the return value is greater than

or equal to 0, the value is the index number given by the MCCL to the motion

command. From these motion command index numbers, the user can follow the

motion command execution process. Using MCC_ResetCommandIndex() resets the

index value, beginning the count at zero.

A. Linear Motion

When using the linear motion command, only the destination position or

displacement of each axis needs to be set. Based on the feed speed motion provided,

the preset acceleration/deceleration time is 300 ms.

EPCIO Series Motion Control

Command Library User Manual

34

 See Also MCC_Line()

B. Curved Motion

When calling the curved motion command, only the reference and destination

point coordinates need to be set. Based on the feed speed motion provided, the preset

acceleration/deceleration time is 300 ms. The MCCL can also provide a 3-D curved

motion command.

 See Also MCC_ArcXYZ() MCC_Arc XYZUVW()

MCC_ArcXY() MCC_ArcXYUVW()

MCC_ArcYZ() MCC_ArcYZUVW()

MCC_ArcZX() MCC_ArcZXUVW()

C. Circular Motion

When calling the circular motion command, only the center coordinates need to

be set, and the direction of motion (clockwise or counter-clockwise) needs to be

indicated. Based on the feed speed motion provided, the preset

acceleration/deceleration time is 300 ms.

 See Also MCC_CircleXY() MCC_CircleXYUVW()

MCC_CircleYZ() MCC_CircleYZUVW()

MCC_CircleZX() MCC_CircleZXUVW()

D. Helical Motion

When calling the helical motion command, only the center coordinates and the

linear feed axis destination coordinates and pitch need to be set, and the direction of

motion (clockwise or counter-clockwise) needs to be indicated. Based on the feed

speed motion provided, the preset acceleration/deceleration time is 300 ms.

 See Also MCC_HelicaXY_Z()

EPCIO Series Motion Control

Command Library User Manual

35

MCC_HelicaYZ_X()

MCC_HelicaZX_Y()

E. General Motion Acceleration/Deceleration Time and Feed Speed

MCC_SetAccTime() and MCC_SetDecTime() can be used to set the desired

general motion acceleration/deceleration times, and MCC_SetFeedSpeed() can be

used to set the desired feed speed. Additionally, note that the MCCL only considers

the three axes X/Y/Z when calculating the general motion feed speed; axes U/V/W

simply begin and end motion simultaneously in correspondence to the previous three

axes (for linear motion). However, if there is no displacement for X/Y/Z in this

motion command, then the set feed speed will become the speed of the axis among

axes U/V/W that has traveled the furthest, and the other two axes will simultaneously

start in concert (similar to point-to-point motion behavior).

The feed speed setting cannot exceed the limit set using

MCC_SetSysMaxSpeed(). If it does exceed the limit, the value set by

MCC_SetSysMaxSpeed() becomes the feed speed. MCC_SetSysMaxSpeed() must

be used prior to InitSystem().

 See Also MCC_GetFeedSpeed()

MCC_GetCurFeedSpeed()

MCC_GetSpeed()

II. Point-to-Point Motion

Point-to-point motion is very similar to linear motion in general motion. The

only difference is that the speed in general motion is set using MCC_SetFeedSpeed()

in units of mm/s or inch/s, while point-to-point motion uses the maximum safe speed

ratio with the corresponding command MCC_SetPtPSpeed(). The ratio is calculated

as follows:

point-to-point feed speed for each axis =

EPCIO Series Motion Control

Command Library User Manual

36

maximum safe speed for each axis × (feed speed ratio / 100)

where

maximum safe speed for each axis = (RPM / 60) × Pitch / GearRatio

Once the feed speed for each axis is obtained, the required time for each axis can

be calculated. The MCCL will then use the axis requiring the longest time as the

primary axis, with the other axes starting simultaneously.

Point-to-point acceleration/deceleration time still follows the settings in general

motion.

 See Also MCC_PtP()

MCC_GetPtPSpeed()

III. Pulse Motion, Inch Motion and Continuous Inch Motion

A. Pulse motion: MCC_JogPulse()

This command requires specific axis movement to be indicated in pulses

(maximum displacement is 2048 pulses). When using this command, motion

status must be stopped (the return value for MCC_GetMotionStatus() should be

GMS_STOP).

MCC_JogPulse(10, 0, 0);

displacement (pulses) indicated axis group index

B. Inch Motion: MCC_JogSpace()

This command requires a specified axis to move by the indicated displacement

(units: mm or inch) according to the indicated feed speed ratio (please see

description in point-to-point motion). While using this command, the motion

status should be stopped (the return value for MCC_GetMotionStatus() should

be GMS_STOP). MCC_AbortMotionEx() can be used to stop this motion. The

following is an example use of this command.

EPCIO Series Motion Control

Command Library User Manual

37

MCC_JogSpace(1, 20, 0, 0);

displacement feed speed ratio indicated axis group index

C. Continuous Inch Motion: MCC_JogConti()

This command requires the selected axis to move according to the indicated feed

speed ratio (please see the description in point-to-point motion) and direction,

and will only stop at the effective work zone boundary set by the user (the

definition of effective work zone is in the machine parameters). While using this

command, the motion status should be stopped (the return value for

MCC_GetMotionStatus() should be GMS_STOP). MCC_AbortMotionEx() can

be used to stop this motion. The following is an example use of this command.

MCC_JogConti(1, 20 , 0, 0);

displacement direction feed speed ratio indicated axis group index

(1: positive, -1: negative)

IV. Motion Pause, Continue, and Abort

MCC_AbortMotionEx() can be used to abort all motion commands currently

being executed and stored. MCC_HoldMotion() can be used to pause the motion

command being executed (at which point the motion is constantly decelerated to a

stop). At this time, the system will only continue executing the unfinished portion of

the command after MCC_ContiMotion() is used. However, MCC_AbortMotionEx ()

can also be used to cancel the unfinished portions.

MCC_AbortMotionEx() stops motion using the indicated deceleration speed. If

the system is already at the hold status, the deceleration time parameter is ignored.

 See Also MCC_GetMotionStatus()

EPCIO Series Motion Control

Command Library User Manual

38

2.6.3 Advanced Trajectory Planning

To achieve more elastic, efficient position control, the MCCL provides several

advanced trajectory planning functions. For example, when precise positioning

between different motion commands is not required and a quick arrival at the

designated position is required, the motion blending function can be used.

Additionally, for common tracking problems in the control system, the MCCL

provides override speed, which allows dynamic adjustment to the feed speed. Below

are descriptions for each of these functions.

Trapezoid Curve S Curve

Fig. 2.6.3. Acceleration/deceleration types

I. Acceleration/Deceleration Type Settings

Acceleration/deceleration type can be set as either a trapezoid curve or an S

curve (see Fig. 2.6.3). The type used for each axis in point-to-point, linear, curved,

circular, and helical motion is set using an identical method.

 See Also MCC_SetAccType() MCC_GetAccType()

MCC_SetDecType() MCC_GetDecType()

MCC_SetPtPAccType() MCC_GetPtPAccType()

MCC_SetPtPDecType() MCC_GetPtPDecType()

T T

V V

EPCIO Series Motion Control

Command Library User Manual

39

II. Enable/Disable Motion Blending

MCC_EnableBlend() enables the motion blend function. This function can

satisfy the requirements to achieve a continuous blend in speed between different

motion commands (the motion does not need to decelerate and stop before the prior

motion command is complete, but can directly accelerate or decelerate into the speed

required for the subsequent motion command). The motion blending function includes

linear-linear, linear-curved, and curved-curved motion blending.

Prior to start of the motion

blend function

After the start of the motion

blend function

Command 1

Command 2

Command 1

Command 2

Velocity Velocity

Time Time

Fig. 2.6.4. Speed during motion blend

As Fig. 2.6.4 shows, when the motion blending function is enabled, the first

motion command directly accelerates from its own stable speed to the stable speed of

the second motion command without decelerating (the solid line in the picture on the

right in Fig. 2.6.4). Using this method, the command execution time is shorter, but

trajectory errors will exist at the connection points between each command. Figure

2.6.5 shows the motion trajectory for motion blending (the dotted line represents the

originally planned trajectory curve).

Linear-linear motion blending

Linear-curved motion blending

Curved-curved motion blending

Fig. 2.6.5 Linear-linear, linear-curved, and curved-curved motion blending

EPCIO Series Motion Control

Command Library User Manual

40

 See Also MCC_DisableBlend()

MCC_CheckBlend()

III. Override Speed

Override speed can be used when the feed speed needs to be dynamically altered

during motion. This function can accelerate the speed of the command being executed

(V1) to the speed required (V2) (when V1 < V2); or decelerate from the current speed

(V3) to the required speed (V4) (when V3 > V4).

In Fig. 2.6.6, V2 = V1 × 175 / 100 (using MCC_OverrideSpeed(175)); similarly,

V4 = V3 × 50 / 100 (using MCC_OverrideSpeed(50)).

Using the speed ratio indicated by MCC_OverrideSpeed(), tangential speed

changes will be forced. The speed ratio is defined as:

speed ratio = altered feed speed / original feed speed × 100

The original feed speed is the speed set by either MCC_SetFeedSpeed() or

MCC_SetPtPSpeed(). CAUTION: Using MCC_OverrideSpeed() will affect all

subsequent motion speeds, not only the motion being executed.

 See Also MCC_GetOverrideRate()

EPCIO Series Motion Control

Command Library User Manual

41

 Fig. 2.6.6. Override speed

Point-to-point Override Speed:

MCC_OverridePtPSpeed() forcefully changes the speed of each axis. The

parameter required for this command is the percentage of the altered speed ratio for

each axis over the original speed ratio, multiplied by 100. Please see the explanation

above. Using MCC_OverridePtPSpeed() will affect all subsequent motion speeds, not

only the point-to-point motion being executed.

 See Also MCC_GetPtPOverrideRate()

 IV. Motion Dry Run

MCC_EnableDryRun() enables the dry run function. With this function, the

trajectory planning results are not sent from the motion control card, but the user can

still use MCC_GetCurPos() and MCC_GetPulsePos() to acquire the content of

trajectory planning. In addition to being able to obtain the motion path prior to its

occurrence, the user can also utilize this information to simulate the motion trajectory

on the screen.

 See Also MCC_DisableDryRun()

MCC_CheckDryRun()

Velocity

Time
V 1 < V 2

Velocity

Time
V 3 > V 4

V 2

V 1

V 3

V 4

MCC_OverrideSpeed(175)

MCC_OverrideSpeed(50)

EPCIO Series Motion Control

Command Library User Manual

42

V. Motion Delay

MCC_DelayMotion() forcefully delays execution of the next motion command.

The delayed time is in ms; an example is displayed below:

MCC_Line(10, 10, 10, 0, 0, 0, 1); -------- A

MCC_DelayMotion(200, 1);

MCC_Line(15, 15, 15, 0, 0, 0, 1); -------- B

Once motion command A is executed, there is a 200 ms delay before continuing

to execute motion command B.

 See Also MCC_GetMotionStatus()

VI. Error Message

When motion over travel occurs (the motion exceeds the software boundary),

feed speed exceeds the maximum set value, acceleration/deceleration exceeds the

maximum set value, curve command error occurs, or curve command execution error

occurs, MCC_GetErrorCode() can obtain the error code and explain the content of the

error (for error code meanings, please consult the “EPCIO Series Motion Control

Command Library Reference Manual”).

When an error occurs in a group, this group will not execute another motion

command. At this point, the user must manually use MCC_GetErrorCode() to

determine the reason for the error, and to remove it. MCC_ClearError() can then be

used to clear the error record and return the group to normal status.

EPCIO Series Motion Control

Command Library User Manual

43

2.6.4 Interpolation Time and Acceleration/Deceleration Time

I. Setting Interpolation Time

Fig. 2.6.7. Trajectory planning parameters

Interpolation time is the time gap to the next interpolation point (see Fig. 2.6.7).

The minimal setting is 1 ms; the maximum setting is 50 ms.

II. Maximum Pulse Speed

The maximum pulse speed limits the number of pulses that can be sent during

each interpolation time, thereby limiting the maximum feed speed.

MCC_SetMaxPulseSpeed() sets the maximum pulse speed, and is set between 1 to

32767. The system default setting is 32767.

 See Also MCC_GetMaxPulseSpeed()

Speed

Pulse Speed

Pulse Acc.

Interpolation Time

Acc. Time

Dec. Time

Time

EPCIO Series Motion Control

Command Library User Manual

44

III. Maximum Pulse Acceleration/Deceleration

Maximum pulse acceleration/deceleration limits the maximum difference in

pulses sent between neighboring interpolation times. If the acceleration/deceleration

time is insufficient during the motion process, the acceleration/deceleration could

exceed machine tolerance values. This may damage the machine due to excessive

motion inertia. This setting can limit the difference in pulses sent to within a range

tolerable by the machine. MCC_GetErrorCode() can determine whether

acceleration/deceleration has exceeded the set range during the motion process.

MCC_SetMaxPulseAcc() sets the maximum pulse acceleration/deceleration between

1 to 32767. The system default setting is 32767 pulses.

 See Also MCC_GetMaxPulseAcc()

IV. Time Required for Acceleration/Deceleration

This command can either set the time needed to accelerate general or point-to-

point motion to a stable speed, or set the time needed to decelerate from a stable speed

to a stop. MCC_SetAccTime() and MCC_SetDecTime() set the acceleration and

deceleration time needed for linear, curved, circular, and helical motion.

MCC_SetPtPAccTime() and MCC_SetPtPDecTime() set the acceleration and

deceleration time needed for point-to-point speed. Faster feed speeds often require

longer acceleration times. Therefore, MCC_SetAccTime() and MCC_SetDecTime()

are often used in combination with MCC_SetFeedSpeed(). Similarly,

MCC_SetPtPAccTime() and MCC_SetPtPDecTime() are also often used in

combination with MCC_SetPtPSpeed().

The below example explains the requirements for different

acceleration/deceleration times for different set feed speeds. Often, users must

customize the content of SetSpeed() according to machine characteristics. SetSpeed()

should be used when it is necessary to change the feed speed. To avoid losing a step,

MCC_SetFeedSpeed() should not be called directly, especially when using a step

motor.

EPCIO Series Motion Control

Command Library User Manual

45

void SetSpeed(double dfSpeed)

{

double dfAcc, dfTime;

dfAcc = 0.04; // set acceleration to 0.04 (mm or inch)/(sec×sec)

if (dfSpeed > 0)

{

dfTime = dfSpeed / dfAcc;

MCC_SetAccTime(dfTime);

MCC_SetDecTime(dfTime);

MCC_SetFeedSpeed(dfSpeed);

}

}

V. Acceleration/Deceleration Mode

There are two acceleration and deceleration modes: acceleration/deceleration

before interpolation, and acceleration/deceleration after interpolation.

For acceleration/deceleration after interpolation, the position command first

plans the displacement of each axis in terms of time, using constant speeds. It then

goes through a digital filter operation to attain the position interpolation command

with acceleration/deceleration. The acceleration/deceleration after interpolation mode

is primarily applied to short linear segment commands. This mode can be used to

solve the problem of the inability to plan the speed command motion. However, this

mode will have larger in-position errors at corner trajectories, and round trajectories

will be shrink. Figure 2.6.8 diagrams the acceleration/deceleration after the

interpolation process.

EPCIO Series Motion Control

Command Library User Manual

46

Fig. 2.6.8. Acceleration/deceleration after the interpolation process

For acceleration/deceleration before interpolation, the acceleration/deceleration

parameters must first be considered during trajectory planning. First, the requirements

for tangential speed acceleration/deceleration should be planned. Based on the

geometric path of motion, such as linear or circular motion, the treatment sought for

the speed and acceleration/deceleration of each axis follows the tangential direction of

the machine’s movement. Figure 2.6.9 diagrams the acceleration/deceleration before

the interpolation process.

Fig. 2.6.9. Acceleration/deceleration before the interpolation process

EPCIO Series Motion Control

Command Library User Manual

47

 See Also MCC_SetAccDecMode ()

2.6.5 System Status Check

Commands provided by the MCCL can check the current actual position,

estimated and actual speed, motion status, motion command stock, hardware FIFO

fine motion command (FMC) stock, and the motion command being executed.

MCC_GetCurPos() obtains the current command position. Units: mm or inch

MCC_GetPulsePos() obtains the pulses sent from the control card. This value

only differs from the value obtained by MCC_GetCurPos() because the latter goes

through machine parameter conversion.

If an encoder is installed in the system, MCC_GetENCValue() can obtain the

current actual position (the obtained value is the encoder count).

MCC_GetPtPSpeed() can obtain the feed speed ratio for point-to-point motion

trajectories, while MCC_GetFeedSpeed() can obtain the feed speed for general

motion. For general motion, MCC_GetCurFeedSpeed() can also obtain the current

actual tangential speed, and MCC_GetSpeed() can then obtain the current actual feed

speed for each axis.

The return value obtained from calling MCC_GetMotionStatus() can determine

the current motion status. If the return value is GMS_RUNNING, the system is in

motion. The return value GMS_STOP means that the system has stopped and there

are no unexecuted stock commands. GMS_HOLD indicates that system has been

paused using MCC_HoldMotion(). GMS_DELAYING means that the system is

currently delayed using MCC_DelayMotion().

MCC_GetCurCommand() obtains information related to the motion commands

currently being executed. The command declaration for MCC_GetCurCommand() is

as follows:

MCC_GetCurCommand(COMMAND_INFO *pstCurCommand,

WORD wGroupIndex)

EPCIO Series Motion Control

Command Library User Manual

48

COMMAND_INFO stores content about the motion command currently being

executed. It is defined as follows:

typedef struct _COMMAND_INFO

{

int nType;

int nCommandIndex;

double dfFeedSpeed ;

double dfPos [6];

} COMMAND_INFO;

where

nType: Motion command type

0. point-to-point motion

1. linear motion

2. clockwise curved, circular motion

3. counter-clockwise curved, circular motion

4. clockwise helical motion

5. counter-clockwise helical motion

6. motion delay

7. enable motion blending

8. disable motion blending

9. enable in position confirmation

10. disable in position confirmation

nCommandIndex: Index for this motion command

dfFeedSpeed :

general motion feed speed

point-to-point motion feed speed ratio

EPCIO Series Motion Control

Command Library User Manual

49

motion delay remaining delay time (units: ms)

dfPos[]: Required destination position

MCC_GetCommandCount() obtains the motion command stock that has yet to

be executed. This stock does not include the motion command currently being

executed.

MCC_GetCurPulseStockCount() obtains the Fine Movement Command (FMC)

stock in the EPCIO Series motion control card. During continuous motion, the FMC

stock must be greater than or equal to 60 to guarantee stable motion performance. If

the FMC stock is equal to 0, interpolation time must be extended (please refer to the

introduction of interpolation time as described previously). Additionally, extending

the interpolation time should also be considered if a lag appears in the user interface

display.

EPCIO Series Motion Control

Command Library User Manual

50

2.7 In Position Control

In position control functions provided by the MCCL include:

1. Closed Loop Proportional Gain Setting

2. In Position Confirmation

3. Error Tracking Sensor

4. Handling Positional Closed Loop Control Failure

5. Gear Backlash and Gap Compensation

The following sections introduce the content and methods for each of these

functions.

2.7.1 Closed Loop Proportional Gain Setting

MCC_SetPGain() sets the proportional gain parameters in the controlled closed

Loop to between 1 to 16256. The method for readjusting proportional gain parameters

is: after adjusting the current loop of motor drive, use the [View Profile] function in

the integrated test environment (ITE) provided on the installation CD to adjust the

proportional gain with error tracking (error tracking is the error between the command

position and the actual position).

 See Also MCC_GetPGain()

2.7.2 In Position Confirmation

The in position confirmation function provided by the MCCL only continues to

the subsequent command after confirming that the motion command being executed

has arrived at its destination (within the error tolerance range). Otherwise, subsequent

commands will be discarded, and an error record will be produced (which the user can

choose to ignore).

To enable this function, call MCC_EnableInPos(). Once enabled, the MCCL will

begin checking whether the command is in position after it sends the final FMC for

the motion command. If it is in position, the next motion command will be executed.

However, if the command is still not in position after waiting for the set maximum

EPCIO Series Motion Control

Command Library User Manual

51

check time (use command MCC_SetInPosMaxCheckTime() to set), subsequent

commands will be discarded and an error record will be produced (for a definition of

maximum check time, refer to Fig. 2.7.1).

Maximum check time
Final FMC sent

Destination

Original

position

Command position curve

Position

Time

Fig. 2.7.1. Maximum check time diagram

The MCCL provides four types of the in position confirmation modes. The user

can select the appropriate type using MCC_SetInPosMode(). Each mode is defined

and introduced below:

Mode IPM_ONETIME_BLOCK:

When the position error for each axis in the group is less than or equal to the

range of error tolerance (MCC_SetInPosToleranceEx() can be used to set this range;

units: mm or inch), the in position criteria for this mode is satisfied (see Fig. 2.7.2).

If this criteria is not met prior to reaching the maximum check time, subsequent

commands will be discarded, and an error record will be produced (use

MCC_GetErrorCode() to obtain this record).

EPCIO Series Motion Control

Command Library User Manual

52

Destination

Original

position

Command

position curve

Position

Actual position curve

Range of error tolerance

In position confirmation

Final FMC sent
Maximum check time

Time

Fig. 2.7.2. IPM_ONETIME_BLOCK mode successful in position diagram

Mode IPM_ONETIME_UNBLOCK:

The in position criteria for this mode are identical to those of the

IPM_ONETIME_BLOCK mode. The only difference is that if these criteria are not

met prior to reaching the maximum check time, no error record is produced, and

subsequent commands are directly executed.

Mode IPM_SETTLE _BLOCK:

When the position error for each axis in the group is less than or equal to the

range of error tolerance (MCC_SetInPosToleranceEx() can be used to set this range;

units: mm or inch) and remains so for a period of settle time

(MCC_SetInPosSettleTime can be used to set this time; units: ms), the in position

criteria for this mode are satisfied (see Fig. 2.7.3).

If these criteria are not met prior to reaching the maximum check time,

subsequent commands will be discarded, and an error record will be produced (use

MCC_GetErrorCode() to obtain this record).

EPCIO Series Motion Control

Command Library User Manual

53

Settle time

Position

Destination

Original

position

Range of error tolerance

Command

position curve

Actual position curve

Final FMC sent
Maximum check time

Time

In position

confirmation

Fig. 2.7.3 IPM_SETTLE _BLOCK Mode successful in position diagram

Mode IPM_SETTLE _UNBLOCK:

The in position criteria for this mode are identical to those of the

IPM_SETTLE_BLOCK mode. The only difference is that if these criteria are not met

prior to reaching the maximum check time, no error record is produced, and

subsequent commands are directly executed.

The greater the in position error tolerance, the shorter the time needed to

complete the in position confirmation. However, the error between the motion

command connection point and the trajectory path will also be greater (in the opposite

situation, the error will be smaller). As Fig. 2.7.4 shows, a smaller in position error

tolerance will produce a more precise trajectory (Error 1 < Error 2). Therefore, in

position error tolerance should be set appropriately considering different function

systems. Additionally, MCC_GetInPosStatus() can obtain the in position status of

each motion axis in the group.

EPCIO Series Motion Control

Command Library User Manual

54

Planned motion trajectory

Error 1
Error 2

Actual motion trajectory A Actual motion trajectory B

Fig. 2.7.4. Effect of the in position error on the path error

 See Also MCC_GetInPosToleranceEx()

MCC_DisableInPos()

CAUTION

1. Because the in position confirmation function compares the actual

position and the target position to determine whether it is within the range

of error tolerance, the motion axes that have enabled this function must

also be connected to an encoder; otherwise, it will never be able to

complete the in position confirmation.

2. Once the system has been determined to be successfully in position,

further in position determination will not be conducted (meaning it will

hold the in position status, even if the actual position leaves the set error

tolerance again; see Fig. 2.7.2), until a new motion command is selected.

2.7.3 Tracking Error Sensor

The error between the motion axis command position and actual position in any

given moment is referred to as the tracking error (see Fig. 2.7.5).

Under normal circumstances, the tracking error size is related to the machine

characteristics, closed loop proportional gain, and motion acceleration. Excessively

large error tracking means that the motion has veered (or lagged) too far from the

trajectory path, and may even have had a collision.

To use this function, use MCC_SetTrackErrorLimit() to set the error tolerance

range and use MCC_EnableTrackError() to enable the function. After the function has

been enabled, once the tracking error for a motion axis exceeds the range, the

EPCIO Series Motion Control

Command Library User Manual

55

subsequent command trajectories for this group are stoped, and an error record is

produced. The user can obtain the error code (0xF801 to 0xF806 represent

excessively large tracking errors for axes X, Y, Z, U, V, W, respectively) using

MCC_GetErrorCode().

Command Position Curve

Position

Time

Actual Position Curve

Tracking Error

Fig. 2.7.5. Tracking error diagram

 See Also MCC_DisableTrackError()

MCC_GetTrackErrorLimit()

NOTE

When using the MCCL, any non-zero return value for MCC_GetErrorCode()

indicates that the group has produced an error record. The method for handling this is

as follows:

1. Determine the type of error and conduct the corresponding error removal

(user should manually define this)

2. Call MCC_ClearError() to clear the error record

3. The system continues normal operations

EPCIO Series Motion Control

Command Library User Manual

56

2.7.4 Handling Positional Closed Loop Control Failure

 When the position closed loop control function fails because the proportional

gain parameter is set incorrectly, or due to other operational reasons, the system will

be in a non-controlled state. To promptly alert the user that the system is in a non-

controlled state, the motion control card will automatically produce an interruption

signal. The user can customize a routine that interrupts the position control closed

loop and serially connects to the system. This customized routine will be called when

the motion axis position closed loop control function fails, and the user can design the

handling procedure into this customized routine. The procedures to use this function

are outlined below:

Step 1: Use MCC_SetPCLRoutine() to serially connect the customized interrupt

service routine

First, the customized ISR and routine declaration must be designed following the

definitions below:

typedef void(_stdcall * PCLISR)(PCLINT *)

Below is a possible customized routine design:

_stdcall MyPCLFunction(PCLINT *pstINTSource)

{

// determine whether the routine was triggered due to a positional closed loop

control function failure in channel 0

if (pstINTSource-> OV0)

{

// handling procedure for positional closed loop control function failure in

channel 0

}

EPCIO Series Motion Control

Command Library User Manual

57

// determine whether the routine was triggered due to a positional closed loop

control function failure in channel 1

if (pstINTSource-> OV1)

{

// handling procedure for a positional closed loop control function failure in

channel 1

}

 // determine whether the routine was triggered due to a positional closed loop

control function failure in channel 2

if (pstINTSource-> OV2)

{

// handling procedure for a positional closed loop control function failure in

channel 2

}

// determine whether the routine was triggered due to a positional closed loop

control function failure in channel 3

if (pstINTSource-> OV3)

{

// handling procedure for a positional closed loop control function failure in

channel 3

}

// determine whether the routine was triggered due to a positional closed loop

control function failure in channel 4

if (pstINTSource-> OV4)

{

// handling procedure for a positional closed loop control function failure in

channel 4

}

EPCIO Series Motion Control

Command Library User Manual

58

// determine whether the routine was triggered due to a positional closed loop

control function failure in channel 5

if (pstINTSource-> OV5)

{

// handling procedure for a positional closed loop control function failure in

channel 5

}

A routine such as “else if (pstINTSource-> OV1)” cannot be used, because

pstINTSource-> OV0 and pstINTSource-> OV1 may not be 0 simultaneously.

Next, use MCC_SetPCLRoutine(MyPCLFunction) to serially connect the

customized ISR. When the customized routine is triggered during execution,

transmitting the pstINTSource parameter declared as PCLINT in the customized

routine can determine which trigger criterion was satisfied to call the customized

routine . The definition of PCLINT is provided below:

typedef struct _PCL_INT

{

BYTE OV0;

BYTE OV1;

BYTE OV2;

BYTE OV3;

BYTE OV4;

BYTE OV5;

} PCLINT;

If the PCLINT field value does not equal 0, the reasons for the customized

routine call, by field value, are presented below:

OV0 Channel 0 positional closed loop control function failure

OV1 Channel 1 positional closed loop control function failure

OV2 Channel 2 positional closed loop control function failure

EPCIO Series Motion Control

Command Library User Manual

59

OV3 Channel 3 positional closed loop control function failure

OV4 Channel 4 positional closed loop control function failure

OV5 Channel 5 positional closed loop control function failure

2.7.5 Gear Backlash and Gap Compensation

When the platform controls position, deficiencies created by the gear or screw

will cause position error during platform movement, such as pitch or backlash error

(see Fig. 2.7.6).

 Fig. 2.7.6. Pitch and backlash error

The user can divide the platform into multiple small segments (see Fig. 2.7.7)

and use a laser instrument to scan the platform back and forth once, recording the

number of segment errors in a forward and backward compensation table. This

compensation table is a two-dimensional array recording the amount of compensation

for all compensation points in each axis. All compensation points are based on one

measurement point (see Fig. 2.7.7). The user must set dwInterval, wHome_No, and

the forward and backward compensation table (nForwardTable and nBackwardTable),

and call the set compensation commands MCC_SetCompParam() and

MCC_UpdateCompParam() to initiate the compensation function. The MCCL

provides 256 compensation points for each axis. Each platform axis can be divided

Pitch Error

d d + ε

Backlash Error

b

EPCIO Series Motion Control

Command Library User Manual

60

into a maximum of 255 compensation segments, using the linear compensation

between each segment.

When using the compensation function, compensation parameters must

cover the entire platform course of work to avoid abnormal operations. Therefore,

the compensation function should be enabled before completing unfinished Go Home

actions. MCC_GetGoHomeStatus() can be used to whether if the Go Home actions

have been completed (return value 1 indicates that the Go Home action has been

completed).

To stop the compensation function, set dwInterval to 0. For example, execute

the following program to stop Channel 0 compensation:

SYS_COMP_PARAM stUserCompParam;

stUserCompParam.dwInterval = 0;

MCC_SetCompParam(&stUserCompParam, 0, 0);

MCC_UpdateCompParam();

Fig. 2.7.7. Compensation segment

Compensation parameters must be set before using the compensation function. The

compensation function parameters are defined below:

dwInternal wHome_No

Forward

Backward

0 1 2 3 4 5 6 7

EPCIO Series Motion Control

Command Library User Manual

61

typedef struct _SYS_COMP_PARAM

{

DWORD dwInterval;

WORD wHome_No;

WORD wPaddle;

int nForwardTable [256];

int nBackwardTable [256];

} SYS_COMP_PARAM;

dwInterval:

This is the interval between compensation segments in pulses. If this value is

less than or equal to 0, compensation is not performed.

wHome_No: Compensation point number for the location of each axis’s home

wPaddle: Preserve field

nForwardTable: Indicator variable for forward compensation table

nBackwardTable: Indicator variable for backward compensation table

Using Fig. 2.7.7, if the X axis work area is divided into 7 compensation

segments, there are a total of 8 compensation points that need to be measured (0 to 7).

Home is located at compensation point 4; meaning that the system will believe it is

currently at compensation point 4 after Go Home is complete. If dwInterval is set to

10000(pulses), the forward work range is 10000 × (7 – 4) = 30000 (pulses), and the

backward work range is 10000 × (4 - 0) = 40000 (pulses). Machine parameters

dwHighLimit and dwLowLimit must match these settings. The compensation

parameter of each axis must be set separately. Below is an example of setting the X

axis compensation parameters.

EPCIO Series Motion Control

Command Library User Manual

62

SYS_COMP_PARAM stUserCompParam;

stUserCompParam.dwInterval = 10000;

stUserCompParam.wHome_No

= 4;

stUserCompParam.nForwardTable[0] = 22;// units: pulse

stUserCompParam.nForwardTable[1] = 20;

stUserCompParam.nForwardTable[2] = 15;

stUserCompParam.nForwardTable[3] = 11;

stUserCompParam.nForwardTable[4] = 0; // home position, set to 0

stUserCompParam.nForwardTable[5] = 10;

stUserCompParam.nForwardTable[6] = 12;

stUserCompParam.nForwardTable[7] = 15;

MCC_SetCompParam(&stUserCompParam, 0, CARD_INDEX);

MCC_UpdateCompParam();

As explained above, the user can divide the platform into a maximum of 0~255

compensation segments, and conduct compensation in each segment using the linear

compensation method. For example, if the X axis (currently located at point 4) needs

to move 15000 pulses forward and to the right, the backlash error compensation table

(see stUserCompParam) shows that this position is between the segments defined by

nForwardTable[5] and nForwardTable[6] (because the position is between 10000 and

20000 pulses).The value for nForwardTable[5] is 10, nForwardTable[6] is 12, and

nForwardTable[6] - nForwardTable[5] = 12 - 10 = 2; so the system must actually send

a total of 15000 + 10 + (int)((15000 – 10000)/ 10000 × 2) = 15000 + 10 + 1 = 15011

pulses.

EPCIO Series Motion Control

Command Library User Manual

63

2.8 Go Home

Users can set the settings that accompany the Go Home parameters, including

the Go Home order of each axis, acceleration/deceleration time, speed, direction, and

mode. The Go Home parameter content is outlined below. For the meaning of each

parameter, please refer to the explanation in section 2.4.3 – “Go Home Parameters.”

Go Home parameters (SYS_HOME_CONFIG):

typedef struct _SYS_HOME_CONFIG

{

WORD wMode;

WORD wDirection;

WORD wSensorMode;

WORD wPaddle0;

int nIndexCount;

int nPaddle1;

double dfAccTime;

double dfDecTime;

double dfHighSpeed ;

double dfLowSpeed ;

double dfOffset;

} SYS_HOME_CONFIG;

2.8.1 Go Home Mode Description

The Go Home parameter wMode designates the Go Home motion use mode. The

modes that require checking home sensor signals will first confirm the accuracy of the

starting point before conducting the Go Home motion. In the following two situations,

the starting point is inaccurate (assume that the initial Go Home direction of motion is

to the right):

EPCIO Series Motion Control

Command Library User Manual

64

a. Go Home motion starting point is in the Home Sensor region (see Fig. 2.8.1

Case 2)

b. According to the direction of motion indicated, entering the Home Sensor

region will be impossible, and will trigger a limit switch (see Fig. 2.8.1 Case 3)

If the above two abnormal starting point situations arise, the MCCL will implement

the following handling procedure:

a. Move at the speed set in dfHighSpeed in the indicated direction until an

emergency stop is executed by triggering a limit switch.

b. Move at the speed set in dfHighSpeed in the indicated direction into the Home

Sensor region, and continue moving until exiting the Home Sensor region, at

which point it will decelerate and stop.

c. Begin conducting the true Go Home action (the action in Case 1).

 Cases 2 and 3 are possible in all of the various Go Home modes introduced in

subsequent sections of this manual, just as they are in the modes requiring Home

Sensor signal check; therefore, describing them further is not necessary. Only Case 1

requires an explanation.

 Additionally, acceleration time dfAccTime represents the time used to

accelerate from 0 to dfHighSpeed (or dfLowSpeed), and deceleration time dfDecTime

represents the time used to decelerate from dfHighSpeed (or dfLowSpeed) to 0. The

“emergency stop” is an immediate stop of the motion axis without deceleration.

EPCIO Series Motion Control

Command Library User Manual

65

Home

Limit

Case 1

Case 2

Case 3

Index

Start Point

Start Point

Start Point

Begin Case 1 Action

Begin Case 1 Action

Fig. 2.8.1. Effect of different start points on Go Home

Each mode’s operational characteristics are described below:

a. Mode 3 (wMode = 3) (Only Case 1 is described below; for cases 2 or 3, please

refer to the preceding explanation)

Move at the speed set in dfHighSpeed in the indicated direction, decelerating

to a stop upon entering the Home Sensor region, thereby completing the action

(At this point, the platform will stop at the machine home, and the MCCL will

move the platform to the logical home based on the parameter dfOffset [for

details, see 2.4.1 and 2.4.3], thereby completing the entire Go Home action; all

subsequent models are the same).

EPCIO Series Motion Control

Command Library User Manual

66

b. Mode 4 (wMode = 4) (Only Case 1 is described below; for cases 2 or 3, please

refer to the preceding explanation)

Step 1: Move at the speed set in dfHighSpeed in the indicated direction,

decelerating to a stop upon entering the Home Sensor region.

Step 2: Move at the speed set in dfHighSpeed in the opposite direction,

decelerating to a stop after exiting the Home Sensor region.

Step 3: Move at the speed set in dfLowSpeed in the indicated direction,

executing an emergency stop after entering the Home Sensor

region, completing the action.

 c. Mode 5 (wMode = 5) (Only Case 1 is described below; for cases 2 or 3, please

refer to the preceding explanation)

Step 1: Move at the speed set in dfHighSpeed in the indicated direction

and begin decelerating to dfLowSpeed upon entering the

Home Sensor region, while simultaneously searching for the

Home

Case 1

Home

Case 1

EPCIO Series Motion Control

Command Library User Manual

67

indicated index number (the example figure is set to search

for index number 1, or nIndexCount = 1).

Step 2: Emergency stop after the indicated index is triggered,

completing the action.

d. Mode 6 (wMode = 6) (Only Case 1 is described below; for cases 2 or 3, please

refer to the preceding explanation)

Step 1: Move at the speed set in dfHighSpeed in the indicated direction,

searching for the indicated index number upon entering the

Home Sensor region (the example figure is set to search for

index number 1, or nIndexCount = 1).

Step 2: Decelerate to a stop after the indicated index is triggered,

completing the action.

Home

Case 1

INDEX
0 1 2

Home

Case 1

INDEX
0 1 2

EPCIO Series Motion Control

Command Library User Manual

68

e. Mode 7 (wMode = 7) (Only Case 1 is described below; for cases 2 or 3, please

refer to the preceding explanation)

Step 1: Move at the speed set in dfHighSpeed in the indicated direction,

decelerating to a stop upon entering the Home Sensor region.

Step 2: Move at the speed set in dfLowSpeed in the opposite direction,

beginning to search for the indicated index number after

exiting the Home Sensor region (the example figure is set to

search for index number 1, or nIndexCount = 1).

Step 3: Emergency stop after the indicated index is triggered,

completing the action.

 f. Mode 8 (wMode = 8) (Only Case 1 is described below; for cases 2 or 3, please

refer to the preceding explanation)

Step 1: Move at the speed set in dfHighSpeed in the indicated direction,

decelerating to a stop upon entering the Home Sensor region.

 Step 2: Move at the speed set in dfHighSpeed in the opposite direction,

beginning to search for the indicated index number after

leaving the Home Sensor region (the example figure is set to

search for index number 1, or nIndexCount = 1).

Step 3: Decelerate to a stop after the indicated index is triggered,

completing the action.

Home

Case 1

INDEX
0 1 2

EPCIO Series Motion Control

Command Library User Manual

69

g. Mode 9 (wMode = 9) (This mode does not have cases 2 or 3)

Move at the speed set in the dfHighSpeed in the indicated direction until an

emergency stop is executed once a limit switch is triggered, completing the

action.

h. Mode 10 (wMode = 10) (This mode does not have cases 2 or 3)

Step 1: Move at the speed set in dfHighSpeed in the indicated direction,

executing an emergency stop once a limit switch is triggered.

Step 2: Move at the speed set in dfLowSpeed in the opposite direction,

beginning to search for the indicated index number after

exiting the Home Sensor region (the example figure is set to

search for index number 1, or nIndexCount = 1).

Step 3: Emergency stop after the indicated index is triggered,

completing the action.

Home

Case 1

INDEX
0 1 2

Case 1

Limit

EPCIO Series Motion Control

Command Library User Manual

70

i. Mode 11 (wMode = 11) (This mode does not have cases 2 or 3)

Step 1: Move at the speed set in dfHighSpeed in the indicated direction,

executing an emergency stop once a limit switch is triggered.

Step 2: Move at the speed set in dfHighSpeed in the opposite direction,

beginning to search for the indicated index number after

exiting the Home Sensor region (the example figure is set to

search for index number 1, or nIndexCount = 1).

Step 3: Decelerate to a stop after the indicated index is triggered,

completing the action.

Case 1

Limit

INDEX

nIndexCount = 1 0

Case 1

Limit

INDEX

nIndexCount = 1 0

EPCIO Series Motion Control

Command Library User Manual

71

j. Mode 12 (wMode = 12) (Only Case 1 is described below; for cases 2 or 3,

please refer to the preceding explanation)

Step 1: Move at the speed set in dfHighSpeed in the indicated direction,

decelerating to a stop upon entering the Home Sensor region.

Step 2: Move at the speed set in dfLowSpeed in the opposite direction

to exit the Home Sensor region.

Step 3: Immediate emergency stop after leaving the Home Sensor

region, completing the action.

 k. Mode 13 (wMode = 13) (Only Case 1 is described below; for cases 2 or 3, please

refer to the preceding explanation)

Step 1: Move at the speed set in dfHighSpeed in the indicated direction,

beginning to search for the indicated index number upon

entering the Home Sensor region (the example figure is set to

search for index number 1, or nIndexCount = 1).

Step 2: Decelerate to a stop once the indicated index is triggered.

Step 3: Move at the speed set in dfLowSpeed in the opposite direction

back to the position where the index was triggered,

completing the action.

Home

Case 1

Home

Case 1

INDEX
0 1 2

EPCIO Series Motion Control

Command Library User Manual

72

 l. Mode 14 (wMode = 14) (Only Case 1 is described below; for cases 2 or 3, please

refer to the preceding explanation)

Step 1: Move at the speed set in dfHighSpeed in the indicated direction,

decelerating to a stop upon entering the Home Sensor region.

Step 2: Move at the speed set in dfHighSpeed in the opposite direction,

beginning to search for the indicated index number after

exiting the Home Sensor region (the example figure is set to

search for index number 1, or nIndexCount = 1).

Step 3: Decelerate to a stop once the indicated index is triggered.

Step 4: Move at the speed set in dfLowSpeed in the opposite direction

back to the position where the index was triggered,

completing the action.

m. Mode 15 (wMode = 15) (This mode does not have cases 2 or 3)

Step 1: Move at the speed set in dfHighSpeed in the indicated direction,

conducting an emergency stop once a limit switch is triggered.

Step 2: Move at the speed set in dfHighSpeed in the opposite direction,

beginning to search for the indicated index number after

exiting the Home Sensor region (the example figure is set to

search for index number 1, or nIndexCount = 1).

Step 3: Decelerate to a stop once the indicated index is triggered.

Home

Case 1

INDEX
0 1 2

EPCIO Series Motion Control

Command Library User Manual

73

Step 4: Move at the speed set in dfLowSpeed in the opposite direction

back to the position where the index was triggered,

completing the action.

n. Mode 16 (wMode = 16) (This mode does not have cases 2 or 3)

Step 1: Move at the speed set in dfHighSpeed in the indicated direction,

decelerating to a stop once a limit switch is triggered.

Step 2: Move at the speed set in dfLowSpeed in the opposite direction

to exit the limit switch region.

Step 3: Conduct emergency stop after exiting the limit switch region,

completing the action.

Case 1

Limit

INDEX

nIndexCount = 1 0

Case 1

Limit

EPCIO Series Motion Control

Command Library User Manual

74

2.8.2 Enabling Go Home

The procedure for enabling Go Home action is outlined below.

1. First, use MCC_SetHomeConfig() to set the Go Home parameters (please refer to

the description in the section 2.4.3).

2. Call MCC_Home(

int nOrder0, int nOrder1, int nOrder2,

int nOrder3, int nOrder4, int nOrder5,

WORD wCardIndex)

where

norder0 - nOrder5 Go Home execution order for each axis

wCardIndex motion control card index

 The Go Home execution order for each axis can be set between 0 to 5, and the

set value can be repeated. The MCCL will first execute the Go Home action on the

motion axes with the order setting 0. Once the actions on these axes are completed,

Go Home orders for motion axes set at 1 will be executed, and this principle will be

followed until the Go Home actions for all motion axes are completed. An order set at

255 means that the Go Home action will not be performed for this motion axis.

MCC_AbortGoHome() can be used during the Go Home process to stop the

Go Home action. The return value from MCC_GetGoHomeStatus() can also be used

to know whether the Go Home action has been completed. If the value is 1, the Go

Home action has been completed. If the value is 0, the Go Home action is still being

performed.

EPCIO Series Motion Control

Command Library User Manual

75

CAUTION

1. Each Go Home mode can be divided into three phases:

Phase 1: Search for the Home Sensor or the limit switch

Phase 2: Search for the indicated index signal

Phase 3: Move from the machine home to the logical home

2. When multiple axes are simultaneously performing Go Home, each axis

must complete Phase 1 before entering Phase 2 together. Similarly, each axis

must complete Phase 2 before entering Phase 3 together. Therefore, it is

possible that during the Go Home process, an axis will have completed the

given phase, and must stop moving to wait for the other axes to complete the

same phase. This situation is normal.

The table below lists the phases included in each Go Home mode:

Mode Phase 1 Phase 2 Phase 3 Description

3 ˇ ˇ

No need to execute Phase 2, but still has

to wait for all axes to complete Phase 2

before proceeding together to Phase 3.

4 ˇ ˇ See Mode 3

5 ˇ ˇ ˇ

6 ˇ ˇ ˇ

7 ˇ ˇ ˇ

8 ˇ ˇ ˇ

9 ˇ ˇ See Mode 3

10 ˇ ˇ ˇ

11 ˇ ˇ ˇ

12 ˇ ˇ See Mode 3

13 ˇ ˇ ˇ

14 ˇ ˇ ˇ

15 ˇ ˇ ˇ

16 ˇ ˇ See Mode 3

EPCIO Series Motion Control

Command Library User Manual

76

2.9 Local I/O Control

Local I/O refers to the input and output connections built into the EPCIO Series

motion control card, and is different from the Remote I/O Module that can expand the

input and output connections to 256 each (sold separately). These I/O connections

have specific uses; but in practical application, if these specific uses are unnecessary

(for example, if the limit switch check function or the output servo-on/off signal are

not needed), these I/O connections can be used for general I/O.

2.9.1 Input Connection Status

The input connections built into the EPCIO Series motion control card include:

a. 6 (EPCIO-601/605/6000/6005) or 4 (EPCIO-400/405/4000/4005) home sensor

signal input connections. Use MCC_GetHomeSensorStatus() to acquire the

home sensor input signal status.

b. 6 (EPCIO-601/605/6000/6005) or 4 (EPCIO-400/405/4000/4005) positive limit

switch signal input connections, and 6 (EPCIO-601/605/6000/6005) or 4

(EPCIO-400/405/4000/4005) negative limit switch signal input connections.

Use MCC_GetLimitSwitchStatus() to acquire the limit switch input signal status.

c. Use MCC_GetEmgcStopStatus() to acquire the input signal status of 1

emergency stop switch signal input connection.

2.9.2 Signal Output Control

The output connections built into the EPCIO Series motion control card include:

a. 6 (EPCIO-601/605/6000/6005) or 4 (EPCIO-400/405/4000/4005) servo-on/off

signal output control connections. Use MCC_SetServoOn() and

MCC_SetServoOff() to output the servo-on/off signal(s).

EPCIO Series Motion Control

Command Library User Manual

77

b. 1 position ready signal control connection. Use MCC_EnablePosReady() and

MCC_DisablePosReady() to output or acquire the position ready signal. Due to

safety considerations, after using MCC_InitSystem() to successfully initiate the

system, and after verifying that the system is operating normally, the position

ready signal is also often used to enable external circuits (for example, driver or

motor circuits).

2.9.3 Input Signal Triggered Interrupt Service Routine

Certain limit switch input connection signals can automatically trigger the user-

customized ISR. Limit switches that can trigger the ISR include the following:

a. EPCIO-601/605/6000/6005, 7 connections:

Channel 0 Limit Switch + (OT0+)

Channel 1 Limit Switch + (OT1+)

Channel 2 Limit Switch + (OT2+)

Channel 3 Limit Switch + (OT3+)

Channel 4 Limit Switch + (OT4+)

Channel 5 Limit Switch + (OT5+)

Channel 0 Limit Switch - (OT0-)

b. EPCIO-400/405/4000/4005, 7 connections:

Channel 0 Limit Switch + (OT0+)

Channel 1 Limit Switch + (OT1+)

Channel 2 Limit Switch + (OT2+)

Channel 3 Limit Switch + (OT3+)

Channel 0 Limit Switch - (OT0-)

Channel 1 Limit Switch - (OT1-)

Channel 2 Limit Switch - (OT2-)

The procedure for using “input connectors triggering the ISR” is outlined below:

EPCIO Series Motion Control

Command Library User Manual

78

Step 1: Use MCC_SetLIORoutineEx() to serially connect the customized

interrupt service routine.

First, the customized ISR and command declaration must be designed following the

definitions below:

typedef void(_stdcall *LIOISR_EX)(LIOINT_EX *)

Below is a possible customized routine design:

stdcall MyLIOFunction(LIOINT_EX *pstINTSource)

{

// determines whether the routine was called due to Channel 0 Limit Switch +

being triggered

if (pstINTSource-> LDI0)

{

// handling procedure when Channel 0 Limit Switch + is triggered

}

// determines whether the routine was called due to Channel 1 Limit Switch +

being triggered

if (pstINTSource-> LDI1)

{

// handling procedure when Channel 0 Limit Switch + is triggered

}

}

A routine such as “else if (pstINTSource-> LDI1)” cannot be used, because

pstINTSource-> LDI0 and pstINTSource-> LDI1 may not be 0 simultaneously.

Next, use MCC_SetLIORoutineEx(MyLIOFunction) to serially connect the

customized ISR. When the customized command is triggered during execution,

transmitting the pstINTSource parameter declared as LIOINT_EX in the customized

EPCIO Series Motion Control

Command Library User Manual

79

command can determine which input connection is triggered inducing calling of the

customized routine. The definition of LIOINT_EX is provided below:

typedef struct _LIO_INT_EX

{

BYTE LDI0;

BYTE LDI1;

BYTE LDI2;

BYTE LDI3;

BYTE LDI4;

BYTE LDI5;

BYTE LDI6;

BYTE TIMER;

} LIOINT_EX;

The connections corresponding to each field in LIOINT_EX are defined

below:

EPCIO-601/605/6000/6005 EPCIO-400/405/4000/4005

LDI0 Channel 0 Limit Switch+ Channel 0 Limit Switch+

LDI1 Channel 1 Limit Switch+ Channel 1 Limit Switch+

LDI2 Channel 2 Limit Switch+ Channel 2 Limit Switch+

LDI3 Channel 3 Limit Switch+ Channel 3 Limit Switch+

LDI4 Channel 4 Limit Switch+ Channel 0 Limit Switch-

LDI5 Channel 5 Limit Switch+ Channel 1 Limit Switch-

LDI6 Channel 0 Limit Switch- Channel 2 Limit Switch-

TIMER determines whether this command was triggered by a timer signal

If the value in one of these fields does not equal 0, then the connection

corresponding to that field currently has a signal input. For example, if the

MyLIOFunction() input parameter pstINTSource-> LDI2 is not 0, it is connected to

Channel 2 Limit Switch +.

EPCIO Series Motion Control

Command Library User Manual

80

Step 2: Use MCC_SetLIOTriggerType() to set the trigger type.

The trigger type can be set as rising edge, falling edge, or level change. Possible

MCC_SetLIOTriggerType() input parameters are as follows:

LIO_INT_RISE Rising Edge (Default)

LIO_INT_FALL Falling Edge

LIO_INT_LEVEL Level Change

Step 3: Finally, use MCC_EnableLIOTrigger() to enable the “input connection

signals triggering interrupt service routine” function. MCC_DisableLIOTrigger()

can be used to disable this function.

EPCIO Series Motion Control

Command Library User Manual

81

2.10 Encoder Control

The encoder control functions provided in the MCCL include feedback rate

changes, count acquisition, count latch, index trigger, and automatic count

comparison and trigger.

Prior to using the encoder control functions, the fields related to encoder

characteristics in the machine parameters need to be accurately set. For details

pertaining to these fields, please refer to the description in section 2.4.2 – “Encoder

Parameters.”

2.10.1 General Control

If the encoder parameter (please see section 2.4.2) wType is set as

ENC_TYPE_AB, meaning that the input form is set to the A/B Phase,

MCC_SetENCInputRate() can be used to set the encoder feedback rate. The feedback

rate can be set to 1, 2, or 4, indicating a feedback rate of ×1, ×2, or ×4, respectively. If

the machine parameter wCommandMode is set to OCM_VOLTAGE (using V

Command) and the feedback rate is changed, the machine value dwPPR needs to be

reset. MCC_GetENCValue() obtains the encoder count.

2.10.2 Count Latch

The MCCL provides a “count latch” function that allows users to set the signal

sources that trigger the encoder count to be recorded in the latched register.

MCC_GetENCLatchValue() obtains the recorded value in the latched register. The

procedure to use the “count latch” function is outlined below:

Step 1: Use MCC_SetENCLatchSource() to set the signal source that will trigger

the count latch action.

All of the trigger sources below can trigger the encoder count to be recorded in

the latched register. MCC_SetENCLatchSource() sets the trigger source criteria. Once

set, multiple criteria can be obtained simultaneously. The trigger signal sources

include the following:

EPCIO Series Motion Control

Command Library User Manual

82

ENC_TRIG_NO No trigger signal source selected

ENC_TRIG_INDEX0 Index signal in encoder Channel 0

ENC_TRIG_INDEX1 Index signal in encoder Channel 1

ENC_TRIG_INDEX2 Index signal in encoder Channel 2

ENC_TRIG_INDEX3 Index signal in encoder Channel 3

ENC_TRIG_INDEX4 Index signal in encoder Channel 4

(For EPCIO-400/405/4000/4005, Manual Plus

Generator (MPG) index signal)

ENC_TRIG_INDEX5 Index signal in encoder Channel 5

(EPCIO-400/405/4000/4005 does not have this signal)

ENC_TRIG_LIO0 Interrupt request from Local I/O connection OT0+

ENC_TRIG_LIO1 Interrupt request from Local I/O connection OT1+

ENC_TRIG_RDI0 Interruption in Remote I/O connection Set 0 DI 0

(Set 0 DI 0 is Digital Input 0 in Remote I/O Set 0)

ENC_TRIG_RDI1 Interrupt request from Remote I/O connection Set 0 DI1

(Set 0 DI 1 is Digital Input 0 in Remote I/O Set 0)

ENC_TRIG_ADC0 Established comparative conditions for Channel 0 ADC

ENC_TRIG_ADC1 Established comparative conditions for Channel 1 ADC

Using

MCC_SetENCTriggerSource(ENC_TRIG_INDEX0 | ENC_TRIG_LIO0, 0, 0)

means that when the encoder Channel 0 index is input and the positive direction

limit for Channel 0 is triggered, the encoder count will be recorded in the latched

register for Channel 0 in Card 0.

Step 2: Use MCC_SetENCLatchType() to set the count latch mode.

After completing Step 1, use MCC_SetENCLatchType() to set the count latch

mode. The possible modes include the following:

EPCIO Series Motion Control

Command Library User Manual

83

ENC_TRIG_FIRST The count is immediately latched and unchanged when

the first trigger criterion is satisfied.

ENC_TRIG_LAST The latch count is updated to an unlimited number when

the trigger criteria are satisfied.

Step 3: Use MCC_GetENCLatchValue() to obtain the latched register record.

The MCCL does not have a command that can be used to determine whether the

record in the latched register has been updated. However, all of the trigger sources

that update the latched register record also trigger the ISR, so the user can use this

function to know whether the record has been updated, and use

MCC_GetENCLatchValue() to obtain the updated record. For actual application,

please refer to the “EPCIO Series Motion Control Command Library Examples

Manual.”

2.10.3 Encoder Count Triggered Interrupt Service Routine

The “encoder count triggered interrupt service routine” function provided in the

MCCL sets the comparative value for encoder channels 0 to 5, and after the function

has been enabled for the selected channels, automatically calls the user-customized

ISR when the given channel count equals the set comparative value. The procedure

for using this function is outlined below:

Step 1: Use MCC_SetENCRoutineEx() to serially connect the customized

interrupt service routine.

First, the customized ISR and the routine declaration must be designed following the

definitions below:

typedef void(_stdcall * ENCISR_EX)(ENCINT_EX *)

Below is a possible customized routine design:

EPCIO Series Motion Control

Command Library User Manual

84

stdcall MyENCFunction(ENCINT_EX *pstINTSource)

{

// determine whether the routine was triggered due to the Channel 0 count

equaling the comparative value

if (pstINTSource-> COMP0)

{

// handling procedure when the Channel 0 comparative value conditions are met

}

// determine whether the routine was triggered due to the Channel 1 count

equaling the comparative value

if (pstINTSource-> COMP1)

{

// handling procedure when the Channel 1 comparative value conditions are met

}

// determine whether the routine was triggered due to the Channel 2 count

equaling the comparative value

if (pstINTSource-> COMP2)

{

// handling procedure when the Channel 2 comparative value conditions are met

}

// determine whether the routine was triggered due to the Channel 3 count

equaling the comparative value

if (pstINTSource-> COMP3)

{

// handling procedure when the Channel 3 comparative value conditions are met

}

EPCIO Series Motion Control

Command Library User Manual

85

// determine whether the routine was triggered due to the Channel 4 count

equaling the comparative value

if (pstINTSource-> COMP4)

{

// handling procedure when the Channel 4 comparative value conditions are met

}

// determine whether the routine was triggered due to the Channel 5 count

equaling the comparative value

if (pstINTSource-> COMP5)

{

// handling procedure when the Channel 5 comparative value conditions are met

}

}

Language such as “else if (pstINTSource-> COMP1)” cannot be used, because

pstINTSource-> COMP0 and pstINTSource-> COMP1 may not be 0 simultaneously.

Next, use MCC_ SetENCRoutineEx(MyENCFunction) to serially connect the

customized ISR. When the customized routine is triggered during execution,

transmitting the pstINTSource parameter declared as ENCINT_EX in the customized

routine can determine which trigger criterion was satisfied to call the customized

routine. The definition of ENCINT_EX is provided below:

typedef struct _ENC_INT_EX

{

BYTE COMP0;

BYTE COMP1;

BYTE COMP2;

BYTE COMP3;

BYTE COMP4;

BYTE COMP5;

BYTE INDEX0;

EPCIO Series Motion Control

Command Library User Manual

86

BYTE INDEX1;

BYTE INDEX2;

BYTE INDEX3;

BYTE INDEX4;

BYTE INDEX5;

} ENCINT_EX;

If the ENCINT_EX field value does not equal 0, the reasons for the customized

routine which is called are presented below by field value:

COMP0 Encoder Channel 0 count equals the set comparative value

COMP1 Encoder Channel 1 count equals the set comparative value

COMP2 Encoder Channel 2 count equals the set comparative value

COMP3 Encoder Channel 3 count equals the set comparative value

COMP4 Encoder Channel 4 count equals the set comparative value

COMP5 Encoder Channel 5 count equals the set comparative value

INDEX0 Triggered by encoder Channel 0 index signal

INDEX1 Triggered by encoder Channel 1 index signal

INDEX2 Triggered by encoder Channel 2 index signal

INDEX3 Triggered by encoder Channel 3 index signal

INDEX4 Triggered by encoder Channel 4 index signal

INDEX5 Triggered by encoder Channel 5 index signal

Step 2: Use MCC_SetENCCompValue() to set the comparative value for the

indicated channel number.

Step 3: Use MCC_EnableENCCompTrigger() to enable the function for the

“encoder count triggered interrupt service routine”.

MCC_DisableENCCompTrigger() can be used to disable this function for the

indicated channel.

EPCIO Series Motion Control

Command Library User Manual

87

2.10.4 Encoder Index Triggered Interrupt Service Routine

The “encoder index triggered interrupt service routine” function provided in the

MCCL uses the index signals for channels 0 to 5 to trigger the user-customized ISR.

The procedure for using this function is outlined below:

Step 1: Use MCC_SetENCRoutineEx() to serially connect the customized

interrupt service routine.

If MCC_SetENCRoutineEx() has not been called, please refer to the above

procedure for calling the command. If MCC_SetENCRoutineEx() has been called,

simply add the parameter (pstINTSource) “index signal input” field

(INDEX0~INDEX5) determination to the customized command. Refer to the

following:

stdcall MyENCFunction(ENCINTEX *pstINTSource)

{

// determine whether the routine was triggered by the Channel 0 index signal

if (pstINTSource-> INDEX0)

{

// handling procedure when the Channel 0 index signal is input

}

// determine whether the routine was triggered by the Channel 1 index signal

if (pstINTSource-> INDEX1)

{

// handling procedure when the Channel 1 index signal is input

}

// determine whether the routine was triggered by the Channel 2 index signal

if (pstINTSource-> INDEX2)

{

// handling procedure when the Channel 2 index signal is input

}

EPCIO Series Motion Control

Command Library User Manual

88

// determine whether the routine was triggered by the Channel 3 index signal

if (pstINTSource-> INDEX3)

{

// handling procedure when the Channel 3 index signal is input

}

// determine whether the routine was triggered by the Channel 4 index signal

if (pstINTSource-> INDEX4)

{

// handling procedure when the Channel 4 index signal is input

}

// determine whether the routine was triggered by the Channel 5 index signal

if (pstINTSource-> INDEX5)

{

// handling procedure when the Channel 5 index signal is input

}

}

Step 2: Use MCC_EnableENCIndexTrigger() to enable the encoder index

triggered interrupt service routine function for the indicated channels.

MCC_DisableENCIndexTrigger() can be used to disable this function.

This function can be combined with the “encoder count latch” function to obtain

the count when the index signal is input (for a description of the “encoder count latch”

function, please see section 2.10.2). MCC_GetENCIndexStatus() can also be used to

determine whether the current motor position is located on the encoder index.

EPCIO Series Motion Control

Command Library User Manual

89

2.11 Digital to Analog Converter (DAC) Control

If motion axes that are required to output voltage have been programmed in the

machine parameters as V Command motion axes (nCommandMode set as

OCM_VOLTAGE), it not possible to use any of the commands related to the DAC

discussed below. An incorrect returned value will be obtained after calling these

commands. Particular attention should be paid to this point.

2.11.1 General Control

After initiating the MCCL with MCC_InitSystem(), MCC_SetDACOutput() can

be used for the DAC, with a voltage output range between -10 V and +10 V.

Additionally, MCC_StopDACConv() can be used to stop the DAC conversion,

and MCC_StartDACConv() can be used to restart the function.

2.11.2 DAC Hardware Trigger Mode

The “DAC hardware trigger mode” function provided in the MCCL can

preprogram one DAC value for the selected DAC channel, and can trigger this preset

voltage from a specific hardware trigger source. The procedure for using this function

is outlined below:

Step 1: Use MCC_SetDACTriggerOutput() to preprogram the DAC value.

For example, using MCC_SetDACTriggerOutput(2.0, 1, 0) preprograms Card 0

DAC Channel 1 to output 2.0 volts.

Step 2: Use MCC_SetDACTriggerSource() to set the hardware trigger source.

Possible hardware trigger sources are defined below. Multiple trigger conditions

can be set simultaneously. Please note that these trigger sources must come from the

same motion control card.

1. DAC_TRIG_ENC0 Specified count in encoder Channel 0

EPCIO Series Motion Control

Command Library User Manual

90

2. DAC_TRIG_ENC1 Specified count in encoder Channel 1

3. DAC_TRIG_ENC2 Specified count in encoder Channel 2

4. DAC_TRIG_ENC3 Specified count in encoder Channel 3

5. DAC_TRIG_ENC4 Specified count in encoder Channel 4

6. DAC_TRIG_ENC5 Specified count in encoder Channel 5 (4-axis cards do not

have this function)

7. DAC_TRIG_ADC0 ADC 0 Specified ADC 0 value

8. DAC_TRIG_ADC1 ADC 1 Specified ADC 1 value

9. DAC_TRIG_ADC2 ADC 2 Specified ADC 2 value

10. DAC_TRIG_ADC3 ADC 3 Specified ADC 3 value (4-axis cards do not have this

function)

11. DAC_TRIG_ADC4 ADC 4 Specified ADC 4 value

12. DAC_TRIG_ADC5 ADC 5 Specified ADC 5 value

13. DAC_TRIG_ADC6 ADC 6 Specified ADC 6 value

14. DAC_TRIG_ADC7 ADC 7 Specified ADC 7 value (4-axis cards do not have this

function)

15.DAC_TRIG_LDI0 Channel 0 Limit Switch + (OT0+) signal input

16.DAC_TRIG_LDI1 Channel 1 Limit Switch + (OT1+) signal input

17.DAC_TRIG_LDI2 Channel 2 Limit Switch + (OT2+) signal input

18.DAC_TRIG_LDI3 Channel 3 Limit Switch + (OT3+) signal input

19.DAC_TRIG_R0DI0 Remote I/O Set 0 DI0 signal input

20.DAC_TRIG_R0DI1 Remote I/O Set 0 DI1 signal input

21.DAC_TRIG_R0DI2 Remote I/O Set 0 DI2 signal input

22.DAC_TRIG_R0DI3 Remote I/O Set 0 DI3 signal input

23.DAC_TRIG_R1DI0 Remote I/O Set 1 DI0 signal input

24.DAC_TRIG_R1DI1 Remote I/O Set 1 DI1 signal input

25.DAC_TRIG_R1DI2 Remote I/O Set 1 DI2 signal input

26.DAC_TRIG_R1DI3 Remote I/O Set 1 DI3 signal input

Four-axis cards (EPCIO-400/4000) have a total of 23 hardware trigger sources.

Six-axis cards (EPCIO-601/6000) have a total of 26 hardware trigger sources.

NOTE: EPCIO-405/4005/605/6005 motion control cards have no ADC or

Remote I/O Set 1 functions, and therefore are unable to use the commands related to

EPCIO Series Motion Control

Command Library User Manual

91

ADC (index 7, 8, 9, 10, 11, 12, 13, and 14) and Remote I/O Set 1 (indices 23, 24, 25,

and 26) described above.

ISRs related to these hardware trigger sources should also be enabled when

setting the hardware trigger sources, thereby allowing the hardware trigger sources to

trigger DAC. For example, using MCC_SetDACTriggerSource(DAC_TRIG_ENC0 ,

1, 2) sets the hardware trigger source for Card 2 Channel 1 DAC as the specified

count for the Card 2 Channel 0 encoder. At this point, the Channel 0 “encoder count

triggered ISR” function should also be enabled. In other words,

MCC_SetENCCompValue() and MCC_EnableENCCompTrigger() must be used to

enable the Channel 0 encoder ISR. For details on this function, please refer to section

2.10.3 – “Encoder Count Triggered Interrupt Service Routine.” Similarly, if the

hardware trigger source is set to the Limit Switch signal, MCC_SetLIOTriggerType()

and MCC_EnableLIOTrigger() should also be used to enable the function triggering

the ISR by input connection signals. For a description of this function, please refer to

section 2.9.3 – “Input Connection Signal Triggered Interrupt Service Routine.”

Step 3: Use MCC_EnableDACTriggerMode() to enable this function, and

MCC_DisableDACTriggerMode() to disable this function.

EPCIO Series Motion Control

Command Library User Manual

92

2.12 Analog to Digital (ADC) Control

2.12.1 Initial Settings

The EPCIO-405/4005/605/6005 motion control cards do not have ADC

functions and therefore do not support “ADC Control” functions. The following

procedure must be completed before using the “ADC Control” functions:

Step 1: Use MCC_SetADCConvType() to set the ADC converter type.

(1) Using MCC_SetADCConvType(ADC_TYPE_BIP) means using a bipolar

converter type, which can acquire a voltage range of -10 V to 10 V (The EPCIO-

400/601) or -5 V to 5 V (The EPCIO-4000/6000).

(2) Using MCC_SetADCConvType(ADC_TYPE_UNI) means using a unipolar

converter type, which can acquire a voltage range of 0 V to 20 V (The EPCIO-

400/601) or 0 V to 10 V (The EPCIO-4000/6000).

Step 2: Use MCC_SetADCConvMode() to set the ADC converter mode.

(1) Using MCC_SetADCConvMode(ADC_MODE_FREE) means that

continuous voltage acquisition is conducted. The voltage acquired will vary based on

which ADC channel is used. This command must be combined with

MCC_EnableADCConvChannel(). For an explanation of this function, see section

2.12.2 – “Continuous ADC Conversion.”

(2) Using MCC_SetADCConvMode(ADC_MODE_SINGLE) indicates that only

single voltage acquisition is used, unless MCC_StartADCConv() is called again;

otherwise, the value acquired will not change. This command must be combined with

MCC_SetADCSingleChannel(). For an explanation of this function, see section

2.12.3 – “Single Channel ADC Conversion.”

2.12.2 Continuous ADC Conversion

After the initial settings above are complete, the below procedure should be

followed to acquire ADC for a specific channel:

Step 1: Call MCC_SetADCConvMode(ADC_MODE_FREE).

EPCIO Series Motion Control

Command Library User Manual

93

Step 2: Use MCC_EnableADCConvChannel() to allow the selected channel to

convert ADC.

A maximum of 8 groups of A/D channels are allowed to simultaneously convert

ADC. ADC conversion only rotates in the input channels permitted.

MCC_DisableADCConvChannel() prohibits ADC conversion in selected channels.

Step 3: Use MCC_StartADCConv() to start and MCC_StopADCConv() to stop

the ADC conversion function.

Step 4: Use MCC_GetADCInput() to acquire the ADC value.

2.12.3 Single Channel ADC Conversion

The MCC_SetADCSingleChannel() command provided in the MCCL can select

a channel to be the only channel in which ADC is converted, while all other channels

stop conversion.

First, use MCC_SetADCSingleChannel() to select the channel, and call

MCC_SetADCConvMode(ADC_MODE_SINGLE) to use the single conversion mode.

After calling MCC_StartADCConv(), the selected channel will convert the ADC once.

ADC will not be converted again after one conversion. The user must call

MCC_StartADCConv() again to conduct another single conversion.

MCC_GetADCWorkStatus() can be used during the conversion period

(approximately 10 µs) to confirm completion of the conversion. Once the completion

of conversion is confirmed, MCC_GetADCInput() can be used to acquire the

ADC value.

2.12.4 Specific ADC Triggered Interrupt Service Routine

The “specific ADC triggered interrupt service routine” function provided in the

MCCL sets the ADC comparative value for the selected ADC channels, and

automatically calls the user-customized ISR when the function is enabled and the

trigger conditions are met. The procedure for using this function is outlined below:

EPCIO Series Motion Control

Command Library User Manual

94

Step 1: Use MCC_SetADCRoutine() to serially connect the customized interrupt

service routine.

First, the customized ISR and routine declaration must be designed following the

definitions below:

typedef void(_stdcall *ADCISR)(ADCINT *)

Below is a possible customized routine design:

_stdcall MyADCFunction(ADCINT *pstINTSource)

{

// determine whether the routine was triggered due to the ADC value in the ADC

Channel 0 satisfying the comparative criteria

if (pstINTSource-> COMP0)

{

// handling procedure when the Channel 0 comparative value conditions are met

}

// determine whether the routine was triggered due to the ADC value in the ADC

Channel 1 satisfying the comparative criteria

if (pstINTSource-> COMP1)

{

// handling procedure when the Channel 1 comparative value conditions are met

}

}

A routine such as “else if (pstINTSource-> COMP1)” cannot be used, because

pstINTSource-> COMP0 and pstINTSource-> COMP1 may not be 0 simultaneously.

Next, use MCC_ SetADCRoutine(MyADCFunction) to serially connect the

customized ISR. When the customized routine is triggered during execution,

transmitting the pstINTSource parameter declared as ADCINT in the customized

EPCIO Series Motion Control

Command Library User Manual

95

routine can determine which trigger criterion was satisfied to call the customized

routine. The definition of ADCINT is provided below:

typedef struct _ADC_INT

{

BYTE COMP0;

BYTE COMP1;

BYTE COMP2;

BYTE COMP3;

BYTE COMP4;

BYTE COMP5;

BYTE COMP6;

BYTE COMP7;

BYTE CONV;

BYTE TAG;

} ADCINT;

If the ADCINT field value does not equal 0, the reasons for the customized routine

which is called are presented below by field value:

COMP0 ADC Channel 0 voltage satisfies trigger criteria

COMP1 ADC Channel 1 voltage satisfies trigger criteria

COMP2 ADC Channel 2 voltage satisfies trigger criteria

COMP3 ADC Channel 3 voltage satisfies trigger criteria

COMP4 ADC Channel 4 voltage satisfies trigger criteria

COMP5 ADC Channel 5 voltage satisfies trigger criteria

COMP6 ADC Channel 6 voltage satisfies trigger criteria

COMP7 ADC Channel 7 voltage satisfies trigger criteria

CONV Any ADC channel completes ADC conversion

TAG ADC tagged channel completes ADC conversion

(only one channel is allowed to be tagged at any given period)

EPCIO Series Motion Control

Command Library User Manual

96

Step 2: Consult the above explanation regarding “initial settings”.

Step 3: Use MCC_SetADCCompValue() to set the ADC comparative value.

Step 4: Use MCC_SetADCCompMask() to set the ADC mask bit.

When the voltage input is compared to the set comparative value, the smallest

few bits can be masked from comparison, reducing the sensitivities of the comparator

and preventing interruptions due to the ADC pulses. The parameters set by this

command include the following:

ADC_MASK_NO No ADC mask bit

ADC_MASK_BIT1 Uses 1 ADC mask bit

ADC_MASK_BIT2 Uses 2 ADC mask bits

ADC_MASK_BIT3 Uses 3 ADC mask bits

Step 5: Use MCC_SetADCCompType() to set the ADC comparison mode.

The ADC comparison mode sets the conditions for triggering interrupt. ADC

comparison modes include the following:

ADC_COMP_RISE The input voltage is compared from least to greatest

ADC_COMP_FALL The input voltage is compared from greatest to least

ADC_COMP_LEVEL The input voltage is changed and compared

Step 6: Use MCC_EnableADCCompTrigger() to enable this function.

Step 7: Combine with the function “continuous ADC conversion” or “single

channel ADC conversion”

2.12.5 ADC Conversion Completion Triggered Interrupt Service Routine

There are two types of “ADC conversion completion triggered ISR” functions

provided in the MCCL. Both are described below:

EPCIO Series Motion Control

Command Library User Manual

97

I. The interrupt service routine is triggered after any ADC channel completes ADC

conversion. The procedures for using this function are outlined below:

 Step 1: Use MCC_SetADCRoutine() to serially connect the customized interrupt

service routine.

If MCC_SetADCRoutine() has not been called, please refer to the above

procedure. If MCC_SetADCRoutine() has been called, simply add the parameter

(pstINTSource) “ADC conversion completion” field (CONV) determination to the

customized routine. Refer to the following:

_stdcall MyADCFunction(ADCINT *pstINTSource)

{

// determine whether the command was triggered by the completion of ADC

conversion by any ADC channel

if (pstINTSource-> CONV)

{

// handling procedure when any channel completes ADC conversion

}

}

Step 2: Use MCC_EnableADCConvTrigger() to enable and

MCC_DisableADCConvTrigger() to disable this function.

II. The interrupt service routine is triggered after an ADC tagged channel completes

ADC conversion. The procedures for using this function are outlined below:

Step 1: Use MCC_SetADCRoutine() to serially connect the customized interrupt

service routine.

If MCC_SetADCRoutine() has not been called, please refer to the above

procedure. If MCC_SetADCRoutine() has been called, simply add the parameter

EPCIO Series Motion Control

Command Library User Manual

98

(pstINTSource) “Tagged channel ADC conversion completion” field (TAG)

determination to the customized routine. Refer to the following:

_stdcall MyADCFunction(ADCINT *pstINTSource)

{

// determine whether the routine was triggered by the completion of ADC

conversion by an ADC tagged channel

if (pstINTSource-> TAG)

{

// handling procedure when the tagged channel completes ADC conversion

}

}

Step 2: Use MCC_SetADCTagChannel() to select the tagged channel.

Step 3: Use MCC_EnableADCTagTrigger() to enable and MCC_DisableADCTa

gTrigger() to disable this function.

EPCIO Series Motion Control

Command Library User Manual

99

2.13 Timer and Watchdog Control

2.13.1 Timer Triggered Interrupt Service Routine

The length of the 24-bit timer on the EPCIO Series motion control card can be

set using the MCCL. When the timer function is set and the timer ends (the value on

the timer equals the set value), the user-customized ISR will be triggered, and the

timer will be restarted. This process will continue until the function is disabled. The

procedure for using this function is outlined below:

Step 1: Use MCC_SetLIORoutineEx() to serially connect the customized

interrupt service routine.

If MCC_SetLIORoutineEx() has not been called, please refer to the above

procedure (see section 2.9 – “Local I/O Control”). If MCC_SetLIORoutineEx() has

been called, simply add the parameter (pstINTSource) “timer ends” field (TIMER)

determination to the customized routine. Refer to the following:

stdcall MyLIOFunction(LIOINTEX *pstINTSource)

{

// determine whether the routine was triggered by the timer ending

if (pstINTSource-> TIMER)

{

// handling procedure when the timer ending

}

}

Step 2: Use MCC_SetTimer() to set the timer in units of System Clock (25 ns).

Step 3: Use MCC_EnableTimerTrigger() to enable andMCC_DisableTimerTr

igger() to disable the “timer triggered interrupt service routine” function .

Step 4: Use MCC_EnableTimer() to enable and MCC_DisableTimer() to disable

the timer function .

EPCIO Series Motion Control

Command Library User Manual

100

2.13.2 Watchdog Control

After the user has enabled the watchdog function,

MCC_RefreshWatchDogTimer() must be used to clear the watchdog timer content

before the watchdog timer ends (the watchdog timer value equals the set comparative

value). Otherwise, once the watchdog time ends, the hardware will be reset. The

procedure for using the watchdog function is outlined below:

Step 1: Use MCC_SetTimer() to set the timer in units of System Clock (25 ns).

Step 2: MCC_SetWatchDogTimer() sets the watchdog timer comparative value.

The watchdog timer comparative value is a 16-bit numerical value using the time

in the timer as a basis. In other words, if the following programming code is used:

MCC_SetTimer(1000000, 0);

MCC_SetWatchDogTimer(2000, 0);

the Card 0 watchdog timer comparative value is set at (25 ns × 1000000) × 2000

= 50 s.

Step 3: Use MCC_SetWatchDogResetPeriod() to set the reset signal duration.

This command can set the duration of the watchdog generated hardware reset

(24-bit numerical value, maximum value of 16777215). Units: system clock (25 ns).

Step 4: Use MCC_EnableTimer() to enable the timer function.

Step 5: MCC_RefreshWatchDogTimer() must be used to clear the watchdog

timer content before the watchdog timer ends.

The user can combine this function with the “timer triggered interrupt service

routine.” The user will be alerted before the watchdog resets the hardware, and will

have to deal with the issue within the timer ISR.

EPCIO Series Motion Control

Command Library User Manual

101

2.14 Remote I/O Control

2.14.1 Initial Settings

Each EPCIO-405/605/4005/6005 motion control card possesses 1 Remote I/O

card plug, referred to as Remote I/O Set 0. Each EPCIO-400/600/4000/6000 motion

control card possesses 2 Remote I/O card plugs, referred to as Remote I/O Set 0 and

Remote I/O Set 1. Remote I/O Set 0 and Remote I/O Set 1 can also be referred to as

Remote I/O Master, and each can control 1 Remote I/O card (Indices EDIO-S001/2/3,

collectively referred to as Remote I/O Slave). As the figure below shows (using the

example of an EPCIO-6000 card), each Remote I/O card provides 64 output and 64

input connections.

EPCIO Series Motion Control Card (Master)

Remote IO Card(Slave) Remote IO Card(Slave)

Set 0 Set 1

Fig. 2.14.1. Remote Master and Slave

Use EnableRIOSetControl() and EnableRIOSlaveControl() to enable the data

transmission function. Below is an example where Card 1 (Index 0) Remote I/O Set 0

and its Slave data transmission function are enabled.

MCC_EnableRIOSetControl(RIO_SET0, 0);

MCC_EnableRIOSlaveControl(RIO_SET0, 0);

2.14.2 Setting and Acquiring I/O Status

When the initial settings are complete, MCC_GetRIOInputValue() can be used

to acquire the input signal status, and MCC_SetRIOOutputValue() can be used to set

EPCIO Series Motion Control

Command Library User Manual

102

the output connection signal status. The prototype of MCC_GetRIOInputValue() is

shown below:

MCC_GetRIOInputValue(WORD* pwValue ,

WORD wSet ,

WORD wPort ,

WORD wCardIndex);

The Remote I/O acquisition function divides the 64 input connections into four

ports: RIO_PORT0, RIO_ PORT1, RIO_ PORT2, and RIO_ PORT3. Each port

contains 16 connections (see Fig. 2.14.2). * pwValue stores the statuses of the 16

input connections. Bit 0 to bit 15 in * pwValue store the input connections statuses for

Input 0 to Input 15, respectively. Parameters wSet and wPort indicate the desired

Remote I/O card set and port.

Fig. 2.14.2. 1 Remote Set contains 4 ports

The Remote I/O written input function also divides the 64 output connections

into four ports: RIO_PORT0, RIO_ PORT1, RIO_ PORT2, and RIO_ PORT3. Each

port contains 16 connections. Therefore, the method of use for

MCC_SetRIOOutputValue() is similar to that of MCC_GetRIOInputValue(). Each

time the output connections statuses are set, the statuses of the 16 output connections

for the indicated port must be set simultaneously. The prototype of the command

MCC_SetRIOOutputValue() is shown below:

Remote IO Set Input

RIO_PORT0

RIO_PORT1

RIO_PORT2

RIO_PORT3

EPCIO Series Motion Control

Command Library User Manual

103

MCC_SetRIOOutputValue(WORD wValue,

WORD wSet,

WORD wPort,

WORD wCardIndex);

where wValue contains the statuses for the 16 output connections indicated by wSet

and wPort.

2.14.3 Acquiring Data Transmission Status

MCC_SetRIOTransError() can be used to set the maximum number of times that

Remote I/O transmission data is retransmitted. This setting is preset to the maximum

value of 16. When data cannot be transmitted correctly, the EPCIO Series motion

control card will retransmit the data. If the data still cannot be transmitted correctly

when the set number of retransmissions is reached, the system will enter a state of

data transmission error. Below is an example setting the maximum number of data

retransmissions for Card 0 Set 0 to 10:

MCC_SetRIOTransError(10, RIO_SET0, 0);

MCC_GetRIOTransStatus() can be used at any time to monitor the data

transmission status for each Remote I/O Set. When a data transmission error occurs,

the information obtained by MCC_GetRIOMasterStatus() and

MCC_GetRIOSlaveStatus() indicates the motion control card or Remote IO card from

which the data transmission error originated.

2.14.4 Input Signal Triggered Interrupt Service Routine

The signals from the first four Remote I/O card input connections (RIO_DI0,

RIO_DI1, RIO_DI2, and RIO_DI3) can trigger the user-customized ISR. The

EPCIO Series Motion Control

Command Library User Manual

104

procedure for using the “input connection signal triggered interrupt service routine” is

outlined below:

Step 1: Use MCC_SetRIORoutineEx() to serially connect the customized

interrupt service routine.

First, the customized ISR and routine declaration must be designed following the

definitions below:

typedef void(_stdcall * RIOISR_EX)(RIOINT_EX *)

Below is a possible customized routine design:

stdcall MyRIOFunction(RIOINT_EX *pstINTSource)

{

// determine whether the routine was triggered from Set 0 Digital Input 0

if (pstINTSource-> SET0_DI0)

{

// handling procedures when Digital Input 0 signal changes

}

// determine whether the routine was triggered from Set 0 Digital Input 1

if (pstINTSource-> SET0_DI1)

{

// handling procedures when Digital Input 1 signal changes

}

// determine whether the routine was triggered from Set 0 Digital Input 2

if (pstINTSource-> SET0_DI2)

{

// handling procedures when Digital Input 2 signal changes

}

EPCIO Series Motion Control

Command Library User Manual

105

// determine whether the routine was triggered from Set 0 Digital Input 3

if (pstINTSource-> SET0_DI3)

{

// handling procedures when Digital Input 3 signal changes

}

}

A routine such as “else if (pstINTSource-> SET_D1)” cannot be used, because

pstINTSource-> SET_DI0 and pstINTSource-> SET_DI1 may not be 0

simultaneously.

Next, use MCC_ SetRIORoutineEx(MyRIOFunction) to serially connect the

customized ISR. The prototype of this routine is as follows:

 int MCC_SetRIORoutineEx(RIOISR_EX pfnRIORoutine,

WORD wCardIndex)

 where pfnRIORoutine indicates the user-customized ISR, such as

MyRIOFunction; wCardIndex is the card index.

When the customized routine is triggered and executed, the pstINTSource

parameter declared as RIOINT_EX transferred into the customized routine can be used

to determine the input connection from which this customized routine originates.

RIOINT_EX is defined below:

typedef struct _RIO_INT_EX

{

BYTE SET0_DI0;

BYTE SET0_DI1;

BYTE SET0_DI2;

BYTE SET0_DI3;

BYTE SET0_FAIL;

BYTE SET1_DI0;

EPCIO Series Motion Control

Command Library User Manual

106

BYTE SET1_DI1;

BYTE SET1_DI2;

BYTE SET1_DI3;

BYTE SET1_FAIL;

} RIOINT_EX;

The connections corresponding to each field in RIOINT_EX are defined below:

SET0_DI0 Set 0 Digital Input 0 status

SET0_DI1 Set 0 Digital Input 1 status

SET0_DI2 Set 0 Digital Input 2 status

SET0_DI3 Set 0 Digital Input 3 status

SET0_FAIL Set 0 data transmission status

SET1_DI0 Set 1 Digital Input 0 status

SET1_DI1 Set 1 Digital Input 1 status

SET1_DI2 Set 1 Digital Input 2 status

SET1_DI3 Set 1 Digital Input 3 status

SET1_FAIL Set 1 data transmission status

When these fields are not equal to 0, the user-customized ISR is triggered by the

corresponding connection signal. For example, if the input parameter pstINTSource -

> SET0_DI0 in MyRIOFunction() is not 0, then Set 0 Digital Input 0 triggered the

customized routine.

Step 2: Set the method for Remote I/O Digital Input signals to trigger the

interrupt service routine.

MCC_SetRIOTriggerType() can be used to set the Remote I/O Digital Input

trigger method as “rising edge,” “falling edge,” or “level change.” The prototype for

MCC_SetRIOTriggerType() is shown below:

EPCIO Series Motion Control

Command Library User Manual

107

MCC_SetRIOTriggerType(WORD wType, WORD wSet, WORD wDigitalInput,

WORD wCardIndex)

where wType is the set method for Remote I/O Digital Input signals to trigger

interruption:

RIO_INT_RISE Rising Edge Trigger

RIO_INT_FALL Falling Edge Trigger

RIO_INT_LEVEL Level Change Trigger

Each input connection method must be set separately, and wDigitalInput can be

used to indicate the input connection desired to be set: RIO_DI0, RIO_DI1, RIO_DI2,

and RIO_DI3.

Step 3: Use MCC_EnableRIOInputTrigger() to enable the input connection

signal triggered interrupt service routine function.

 Below is an example of using MCC_EnableRIOInputTrigger(), where the

function is enabled for Remote I/O Set 0 Digital Input 0.

 MCC_EnableRIOInputTrigger(RIO_SET0, RIO_DI0, 0);

2.14.5 Data Transmission Error Triggered Interrupt Service Routine

In addition to using MCC_GetRIOTransStatus(), MCC_GetRIOMasterStatus(),

and MCC_GetRIOSlaveStatus() to monitor the Remote I/O data transmission status at

any time, when a data transmission error occurs, it can also trigger the user-

customized ISR. This function allows the user to handle data transmission errors

promptly. The procedure for using this function is outlined below:

EPCIO Series Motion Control

Command Library User Manual

108

Step 1: Use MCC_SetRIORoutineEx() to serially connect the customized

interrupt service routine.

If MCC_SetRIORoutineEx() has not been called, please refer to the procedure

described above (see the section on the “input connection signal triggered interrupt

service routine”). If MCC_SetRIORoutineEx() has been called, simply add the

parameter (pstINTSource) “data transmission status” field (FAIL) determination to the

customized routine. Refer to the following:

stdcall MyRIOFunction(RIOINT_EX *pstINTSource)

{

// determine whether a data transmission error has occurred

if (pstINTSource-> SET0_FAIL)

{

// handling procedures when a data transmission error has occurred

}

}

Step 2: Use MCC_EnableRIOTransTrigger() to enable the data transmission

error triggered interrupt service routine function.

The following is an example using MCC_EnableRIOInputTrigger(), where the

data transmission error triggered ISR function is enabled for Remote I/O Set 0.

MCC_EnableRIOTransTrigger(RIO_SET0, 0);

2.14.6 Remote I/O Command

After calling the MCCL Remote I/O control command

MCC_SetRIOOutputValue(), the input/output command will be immediately

executed and interpreted for the corresponding input/output action.

After calling the MCCL I/O control command MCC_EnquRIOOutputValue(),

the input/output command will not be executed immediately, but will be put in an

EPCIO Series Motion Control

Command Library User Manual

109

exclusive motion command queue. The MCCL will use the FIFO method to

sequentially obtain the motion commands or input/output commands from the queue,

interpreting and executing the corresponding action.

EPCIO Series Motion Control

Command Library User Manual

110

3. Editing and Translation Environment

3.1 Using Visual C++

Including Files

MCCL.h

MCCL_Fun.h

Import Library (Users must add these files to the project)

MCCLISA_50.lib (for ISA Bus)

MCCLPCI_50.lib (for PCI Bus)

Below is the process for adding the necessary import library MCCLPCI_50.lib

when using an EPCIO Series PCI card (EPCIO-4000/4005/6000/6005), and using

VC++ as a development tool:

Step 1:

Use [Add To Project] under [Project]

Step 2:

Select MCCLPCI_50.lib to add to project

EPCIO Series Motion Control

Command Library User Manual

111

3.2 Using Visual Basic

Including Files

MCCLISA_50.bas (for ISA Bus)

MCCLPCI_50.bas (for PCI Bus)

Below is the process for adding the necessary import module MCCLPCI_50.bas

when using an EPCIO Series PCI card (EPCIO-4000/4005/6000/6005), and using VB

as a development tool:

Step 1:

Use [Add] -> [Module] under [Project]

Step 2

Select MCCLPCI_50.bas to add in the module

EPCIO Series Motion Control

Command Library User Manual

112

3.3 Using C++ Builder

Including Files

MCCL.h

MCCL_Fun.h

Import Library (Users must add these files to the project)

MCCLISA_50_BCB.lib (for ISA Bus)

MCCLPCI_50_BCB.lib (for PCI Bus)

MCCLPCI_50_BCB.lib is obtained directly using the implib command provided

by BCB. The implib command form is described below:

Implib target import library name dll source file name

Example: implib c:\MCCLPCI_50_BCB.lib c:\MCCLPCI_50.dll

The MCCL dynamic link files are generated using VC++. Therefore, the import

library required by BCB must use the implib command to be reproduced. The

installation CD already includes a reproduced import library. The import libraries

provided to BCB include:

MCCLISA_50_BCB.lib (for ISA Bus)

MCCLPCI_50_BCB.lib (for PCI Bus)

